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1 How much noise can we remove by PCA?

1.1 James Bond tells the story

Y’all probably heard about Principal Component Analysis (PCA) and how it can be used to clean up noisy
datasets. This can be done with our software, for instance. But have you ever wondered how it actually
works? And more importantly, can it eliminate all the noise or just a fraction? Well, this post is here to
shed some light on those questions. Let’s dive in!

Figure 1: Secret agent James Bond.

Let’s break down the concept of Principal Component Analysis (PCA) in simple terms. Imagine we
have a spy named Mr. Bond, who’s tasked with sending reports from a top-secret school. These reports
contain student grades in different subjects. Each week, Mr. Bond creates a table (shown in blue in the
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figure) where each row represents a student, and each column represents their scores in specific subjects
like math, sport, and geography. Now, here’s the catch: Mr. Bond can’t transmit the table as is because
it needs to be encoded to maintain secrecy. To do this, he has a set of predefined keys (shown in yellow).
He simply multiplies the blue matrix (the grade table) with the yellow matrix (the keys) to obtain a new
matrix shown in green. This encoded matrix is then transmitted via radio during the cover of night.

Figure 2: Rotation of data matrix.

At the headquarters, the smart folks there know linear algebra. They receive the encoded matrix and
use the reverse key matrix to decipher it and restore the original table with the students’ grades.

After a few weeks, Mr. Bond starts to notice a peculiar pattern with the keys he receives from the
headquarters. It turns out that these keys aren’t just random combinations. Whenever he multiplies any
column of the key matrix with another column, the result is always zero. It dawns on him that his lazy
boss, who designed the keys, took a rather simplistic approach.

You see, his boss considered the three subjects as coordinates in a 3D space, and all he did was rotate
these coordinates to mix up the results. Each week, he came up with three new basic vectors and defined
them in terms of the original coordinates, as shown in the figure. In his old-fashioned ways, the boss made
sure that the basic vectors were always orthogonal to each other. That’s why multiplying the coordinates
of these basic vectors always yields zero. Now, here’s the funny part: For one week, his boss provided a
unit matrix (the most left matrix in the first figure). This meant that there was no encoding that week!

As the story unfolds, Mr. Bond is now tasked with transmitting a number of spectra obtained from
a highly classified material. Each spectrum consists of 2048 channels, which means Mr. Bond receives
2048×2048 key matrices for encoding. Just like before, his boss continues to construct the encoding matrices
by rotating the basis vectors, but this time operating in a vast 2048-dimensional space.

As Mr. Bond faithfully transmits the encoded spectra, he begins to notice something interesting. Certain
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Figure 3: Rotation basis.

Figure 4: Now data are spectra.

columns in the key matrices seem to be more efficient at encoding than others. These columns, presumably
manually defined by his boss, result in smooth variations when applied to the spectra. However, there are
other columns (probably appearing due to the orthogonality constraints) that produce noisy columns in
the encoded matrices. Mr. Bond becomes skeptical about whether these noisy columns carry any valuable
information at all.

Driven by his intuition, Mr. Bond decides to skip these seemingly useless coding columns. This choice
speeds up his transmission work at night and reduces the risk he faces. He informs the MI-6 headquarters
that they should retain only a few specified rows in the reverse key matrix when decoding. To his surprise,
the headquarters manages to successfully decode the spectra using this reduced set of rows. In fact, they
even admit that the quality of the decoded spectra has improved significantly. It appears that much of the
data Mr. Bond had been transmitting before was nothing more than noise.

On that fateful day, James Bond made a life-altering decision. He stopped stealing, peeling, eavesdrop-
ping, and embarked on a completely different path. No longer would he receive key matrices from head-
quarters; instead, he took matters into his own hands and constructed the keys himself for each dataset.
His new mission was clear: to discover basis vectors that would enable him to express the data using the
fewest possible coordinates, ultimately compressing the data and improving its quality by reducing noise.

As he delved deeper into this new endeavor, Bond came across a remarkable rule. The key columns that
yielded the highest data variance in the columns of the encoded matrix were most efficient for encoding.
This criterion of maximizing data variance wasn’t the only possible criterion (we can explore other criteria
in future discussions), but it proved astonishingly successful. Bond meticulously constructed the rows in
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Figure 5: Sparse economical encoding.

Figure 6: Inverse transformation.

the reverse key matrix, sorting them based on their efficiency in producing maximal data variance. He then
employed only a few of the top-ranked rows to reconstruct the complete datasets.

With this transition, James Bond inadvertently invented Principal Component Analysis (PCA). He now
refers to the red reverse key matrix as the “loadings” matrix, and to the green encoded matrix as the
“scores” matrix.

James Bond’s role has changed dramatically since that time. He is still employed by the secret service,
but now as a data scientist. We are not going to name his employer. To conceal the real name, let’s call
it by some senseless abbreviation, for instance, ’MI-6’. And James Bond’s career in MI-6 develops quite
successfully.

1.2 Now closer to the technical topic

For those familiar with PCA, they can skip the essay above and delve right into this paragraph. Is the
Bond’s invention indeed as magical? How much noise can we remove with PCA? All the noise or just a
fraction? The answer is that PCA cannot completely eliminate all noise from a dataset.

Consider the plot of variances in the scores columns, which is called scree plot (although some journal
technical editors always tend to correct it for screen plot. . . ). Each column in the score matrix and the
companion row in the loadings matrix form a principal component. The scree plot for a typical EELS dataset
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Figure 7: Compressed encoding.

is shown below. Note that the variances are displayed in the logarithmic scale, therefore the negative values
denote just numbers below 1. When constructing the scree plot, it is common practice to calculate and
plot the variances for a limited number of principal components, typically the first 20 to 50 as I showed
in the left figure. However, for better understanding the things, I also calculated the variance for all 2048
principal component (shown in the right). Yes, the total number of the principal components equals the
number of the energy channels, i.e. 2048.

Figure 8: Variances of principal components (screeplot). Left picture shows first 50 components, right one
- all 2048 components.

The scree plot helps researchers strike a balance between retaining enough principal components to
capture meaningful data variations and reducing the noise contained mostly in less significant components.
By selecting a cut-off point, such as the 5th component, we declare: all components at the left (i.e. 1-5th
components) are useful while all components at the right (6-2048th) are “noise components” and should be
removed. Does it mean that we get rid of all the noise by removing components 6-2048? No way!

I believe Edmund Malinowski (E.R. Malinowski, Anal.Chem. 49 (1977) 606) was the first who clearly
showed that the so-called ‘meaningful components’ also consist of noise. With using a simple assumption
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of equal distribution of noise in the green ‘score’ matrix above he calculated how much noise is removed.
There is always an ‘imbedded’ noise in the major principal components, although typically not much. For
the shown example, I estimated that 99.5 percent of the total noise is incorporated in components 6-2048
while only 0.5 percent is imbedded in components 1-5. that is not surprising as we compressed the data
2048/5 400 times!

Figure 9: This graph shows how much noise we remove when reconstruct the dataset with a given number
of principal components. Left picture shows first 50 components, right one - all 2048 components. Note
that we never remove 100 percent of noise.

Let’s explore the question: What happens if we use more than 5 components for the PCA reconstruction?
Would the results significantly worsen? To answer this, let’s delve into the calculations. The noise variance
is additive among the components, thus we can safely sum it up in any required range. Do not forget to
take a square root of this sum in order to rescale it from quadratic deviations to the linear scale! The results
are in figure above. As we increase the number of included principal components, we observe a gradual
decrease in the amount of noise removed. Initially, this reduction follows an almost linear pattern, but it
becomes slower as we include more components. If we utilize 50 components instead of 5 for reconstruction,
the amount of removed noise decreases from 99.5 to 95 percents. The question arises: is this reduction
substantial or not? It depends. . .

The considered EELS spectra exhibit distinct statistics across different energy regions. When examining
the Ti L edge region, the reconstructions using both 5 and 50 components yield identical results. However, in
the case of the region near the Mg K edge, where the data are heavily affected by noise, the reconstructions
using 5 and 50 components display noticeable differences.

Correspondingly, when we examine the spectrum-image slice at 1880eV with a width of 1eV, we observe
significant differences in the reconstruction results obtained using 2048, 50, 20, 10, and 5 components. Note
that reconstructing with 2048 components means preserving all possible principal components, which is
equivalent to not applying PCA at all.
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Figure 10: Quality of the denoised curve (red) depending on how many principal components, 5 or 50, was
used for reconstruction. The lower energy region is on top and the higher energy region is on bottom.

Figure 11: Energy slice at 1880eV with the width of 1eV as a function of the number of components used
in reconstruction.

9



In summary, keeping an excessive number of principal components during PCA reconstruction gradually
diminishes the denoising effectiveness of PCA. However, the question arises: why do people sometimes still
use too many components? This topic will be further explored and discussed in upcoming posts.

Lars:
Hello Pavel. Thank you for this contribution, very well written! However, I can’t really figure out from your
explanation how you came up with 99.5 percent noise reduction. So, you compressed your set by 2048:5 =
410 times. That means the noise should also be compressed 410 times. 100 percent devided by 410 equals
0.24 percent. So, shouldn’t it be 99.8 percent noise reduction?! – Am I missing something? Thank you in
advance

Pavel:
I afraid its more complicated. First, the noise level itself cannot be additively summed up among compo-
nents. The noise variance may be summed, then we should take the square root from the summed variance.
Second, Malinowski (Anal. Chem 49 (1977) 606) assumed the equal distribution of the noise variance
among components, which is not true. In the later article (J. Chemometrics 1 (1987) 33) he introduced
some dependence, which still typically underestimated the noise. You can check the article (Chemomentrics
Int. Lab. Sys. 94 (2008) 19) to get feeling how complicated might be the distribution of noise among
components. I just linearly extrapolated the noise variance from components 10-20 to components 1-5.
This way I got 0.5percent of noise still remaining in the meaningful components, which is still, of course, a
very rough estimation.

Juan:
Does it have something to do with the percentage of the explained variance?

Pavel:
No. The explained variance ratio is easy to calculate, however its applicability is limited. Namely, it is useful
in the situations of little noise only. Then you can say ‘the first 5 principal components explain 99percent
of the signal variance, so I may compress the data to 5 components and not loose much. However, the
explained variance ratio can be misleading for very noisy data. Imagine a data set with the only noise,
no signal variation. Still, PCA will retrieve the noisy components that are a bit more variable than the
other noise ones. You can also calculate the explained variance ratio and probably claim that the first 50
components explain 99 percent of variance. But still, these 99 percents are nothing but noise because there
is no signal variation in this set. The estimation of the signal : noise proportion in data is a much more
complicated task and the starting point here is the theory of Malinowski (Anal. Chem 49 (1977) 606).

2 PCA reveals trends

2.1 James Bond tells the story

This story takes us back to a time when James Bond was sent undercover as an MI-6 agent to a highly
classified school. His mission was to observe the participants closely.

Bond meticulously tracked the grades of all the students and created tables where each row represented
a student, and each column represented their scores in specific subjects such as math, sports, and geography.
Soon, Bond found himself overwhelmed by a massive amount of data. To simplify it, he decided to calculate
the average grade for a certain period, thinking it would provide a more representative picture.

However, the results turned out to be inconclusive. Bond then attempted to calculate the average grades
across all students. Since this measure was independent of each student’s individual abilities, it reflected
rather the quality of teaching in the school for each subject. In the next step, Bond realized that the
individual deviations from this average would be more informative.

Nevertheless, analyzing the data proved to be challenging. The headquarters advised him to employ
some linear algebra techniques, specifically the rotation of basis. You see, the scores in the three subjects
can be likened to coordinates in a three-dimensional space, and they can be transformed into a rotated
basis.

James experimented with this rotation and made an intriguing discovery. It was possible to rotate the
basis in such a way that most of the columns in the transformed table became zero or close to zero. In other
words, when the data was projected onto the new y and z coordinates, it resulted in little useful information
and mostly represented noise. These y and z columns were deemed unimportant and could be removed.
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Figure 12: Composing an average from a number of data matrices.

Figure 13: Now the matrix shows the deviation from the average.

Figure 14: Recast data matrix in a new rotation basis.

Now, what about the remaining new x coordinate? James Bond found that it exhibited a distinct
pattern: positive numbers for math and negative numbers for sports and geography, in a certain proportion.
Aha, thought James, students with positive values in this specific score tended to have analytical thinking
skills, while those with negative values were more inclined towards activities such as traveling, acting, and
shooting.
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Figure 15: In the optimal basis, the only few important column may be retained in the matrix while the
others may be discarded.

Bond now had a powerful tool to characterize the individual profiles of each student, providing crucial
results to report back to headquarters.

Figure 16: Trend has a certain signature: Prominent in math but not in sport and geography are at the
one pole of trend while good in sport and geography but weak in math are at the other pole.

2.2 Technical example

How can we apply James Bond’s experience to our own endeavors? Let’s consider a vast collection of spectra
comprising 1000 energy channels, all of which are affected by noise. Behind the scenes, the only variation
lies between compound A and compound B, whose ideal spectra are depicted in the figure.

However, the presence of significant noise makes spectra horrible. It is not clear what is going on in the
data set:

No panic! Following Bond’s strategy, we calculate the mean spectrum and treat all the data as deviations
from this mean. Still, analyzing the data with 1000 channels proves challenging. Go further!

Apply Principal Component Analysis (PCA), which is akin to the rotation technique employed by James
Bond. Miraculously, PCA reveals that essentially one parameter varies across the data: the proportion of
compounds A and B. To emphasize, instead of dealing with 1000 independent counts across 1000 channels,
we find that there is only one parameter that predominantly governs all counts. This parameter is the
strength of the deviation from the mean while the shape of deviation is characterized by a certain curve
revealed by the PCA basis.
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Figure 17: Spectra of two compounds.

Figure 18: Typical spectra corrupted by noise.

Figure 19: Decompose spectra on mean and deviation.

To distance ourselves from spy terminology, let’s refer to this curve as an ”eigenvector” rather than a
”signature.” This eigenvector shows a trend.

Lets also clarify our usage of the term ”trend,” as it deviates from the commonly intuitive definition of
collective behavior driven by a specific impulse, such as the buying of Tesla stocks. Instead, we refer to a
statistical linear trend, which can be extrapolated in two directions. Following a positive direction signifies
the strengthening of a particular feature, while following a negative direction indicates its weakening.
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Now, all spectra with a parameter close to +1.0 would exhibit the spectrum of compound A, while those
close to -1.0 would display the spectrum of B. Naturally, there are numerous spectra that fall in between A
and B, representing a mixture of the two compounds. Their parameter is in the range (-1.0 : +1.0). Our
comprehension of the data set has now reached a state of clarity and coherence.

In conclusion, PCA analysis not only enables us to compress and denoise spectroscopic data but also
allows us to extract clear variation trends that may go unnoticed to the naked eye. By reducing the
complexity of the data and identifying the dominant trends, PCA provides valuable insights and reveals
patterns that might otherwise remain hidden.

Figure 20: Intelligence service assisted by PCA.

Abdul:
That’s all wrong! People charachters can’t be described by one parameter.

Pavel:
You are absolutely correct; people are indeed complex beings. I must admit that I oversimplified the story
that Bond shared with me. In reality, there were approximately 40 subjects and 4 distinctive parameters
involved. From what I recall, these parameters included: 1) “analytical vs acting,” 2) “artistic vs technical,”
3) “lazy vs hardworking,” and 4) “communicative vs reserved.” Even with these parameters, one can begin to
construct a reasonably accurate profile of an individual. I use the term “in reality,” but it remains uncertain
what information Bond may have shared. A significant portion of this story still remains top-secret, even
to this day. . . .

Thomas:
I checked several papers on application of PCA. They generally do not subtract the mean value before the
decomposition. If you count everything from the mean, the eigen spectra may be negative like in your last
picture. That is hard to understand. Counting from zero, not from mean, is more logical.

Pavel:
Hmm. . . I doubt that most people do not subtract the mean prior to PCA. I believe the most common
approach is subtracting the mean, which is called centered PCA. However, you are right, sometimes people
ignore centering. This is because they do not attempt to find a trend in the data but simply want to denoise
it. I will try to clarify this with a simple example. Suppose there is a dataset with only two energy channels
or features. There is a clear trend – the features change in a 2:1 proportion as shown in the figure. Centered
PCA will immediately find the direction of this trend, while uncentered PCA will first find the eigenvector
pointing more or less to the center of the data distribution. Moreover, the second eigenvector will also
not coincide with the true trend because it is restricted to the orthogonality conditions of eigenvectors.
Therefore, you end up with two basic vectors, none of which coincides with the true trend. However, it
is easy to see that the ‘true’ trend direction is just a linear combination of these two vectors. Thus, the
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Figure 21: All secret agents dressed in the same way are visible to anyone.

denoising reconstruction still works, although you need one more component than in the centered case. I
should mention, however, that if there are more than one trend in the data, the situation becomes more
complicated and the differences between centered and uncentered PCAs are not significant. To summarize:
for the denoising task, centered and uncentered PCAs are almost equivalent, but if you want to retrieve the
trend, centered PCA is needed.

2.3 Used codes

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import math as m

4

5 def gaussian(x, mu, sig):

6 return np.exp(-np.power((x - mu)/sig , 2.) / 2)

7 def smooth_gaussian(spec ,mu ,sigma):

8 noise = np.random.normal(mu,sigma ,D)

9 spec +=noise

10 return spec

11

12 D =1000 #number of energy channels

13 SignalW =50 #width of the signal peak in spectrum

14

15 spec1 =np.arange(D)

16 spec1 = gaussian(spec1 ,D/4,SignalW) #1st compound shows a peak at the 1st quater of

spectrum

17 spec2 =np.arange(D)

18 spec2 = gaussian(spec2 ,3*D/4,SignalW) #2nd compound shows a peak at position 3/4 of

spectrum

19

20 plt.plot(np.arange(D),spec1) #spectral signature of 1st compound

21 plt.show()

22 plt.plot(np.arange(D),spec2) #spectral signature of 2nd compound

23 plt.show()

24 plt.ylim (0,1)

25 plt.plot(np.arange(D),(spec1+spec2)/2) #mean spectrum

26 plt.show()

27 plt.plot(np.arange(D),(spec1 -spec2)/2) #difference spectrum

28 plt.show()

29

30 Int =2 #spectra intensity constant

31 Sigma =1 #gaussian noise added to spectra

32

33 #generate spectra with different proportion of 1st and 2nd compounds
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34 fract =0.7

35 spec =(fract*spec1 + (1-fract)*spec2)*Int

36 spec =smooth_gaussian(spec ,0,Sigma)

37 plt.plot(np.arange(D),spec)

38

39 fract =0.3

40 spec =(fract*spec1 + (1-fract)*spec2)*Int

41 spec =smooth_gaussian(spec ,0,Sigma)

42 plt.plot(np.arange(D),spec)

43 plt.show()

Listing 1: Generate model spectra from mixture of two compounds

3 ICA vs PCA

3.1 James Bond tells the story

Once, I asked James Bond what was most important for a secret agent: shooting smartly or running quickly.
”None of them,” answered Bond. ”The most important thing is to be invisible. You should not be

noticed by anybody who is searching for you.”

Figure 22: A secret agent should be invisible, otherwise...

”So, should you be dressed as a very average person?”
”Not exactly,” replied James. ”Indeed, we considered what should be a kind of average clothing style,

but we cannot outfit all agents in such a style. A long time ago, our hereditary princess suddenly disappeared
during her visit to Rome. A hundred agents were simultaneously dispatched to Rome to find her.”

”I think I heard something about that...” I said.
Bond’s face suddenly hardened. ”You could not have heard about that. It was top-secret.”
But then he softened a bit. ”No matter, it’s an old story. So, we sent a hundred agents dressed as

’average,’ but they all looked the same. When they disembarked from the plane, all the Italians greeted
them with ’buongiorno, signori agenti segreti!’ It was a complete fiasco. However, we learned from that
case. You should not look ’average’; you should deviate from the norm, but do it in a ’usual’ way.”

”Some kind of random distribution?” I asked.
”Yes, but not just any random distribution,” Bond replied. ”You should be distributed like a Gaussian

curve around the average. That way, it’s difficult to catch you. Have you heard of Independent Component
Analysis?”

”Is it about terrorists preparing explosions on Independence Day?” I guessed.
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Figure 23: All secret agents dressed in the same way are visible to anyone.

Figure 24: All spy’s features should distributed as a Gaussian around the average.

”Not exactly,” Bond smiled. ”It’s a technique for identifying features distributed in an unusual way, such
as anything that deviates from the Gaussian distribution, which is the most common in this world. Things
that don’t follow a Gaussian pattern might be of interest to us. For example, detecting speech buried in a
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sea of noise. In fact, we rely on Independent Component Analysis more often than we do on our guns.”

3.2 Apply ICA to materials science

I was fascinated by what James Bond had said about Independent Component Analysis (ICA). I thought,
maybe it could be applied to materials science, much like we had previously applied PCA. Perhaps ICA could
even outperform PCA? I had come across an article (J.M.P. Nascimento IEEE Trans. Geosc. Remote Sens.
43 (2005) 175) claiming that ICA wasn’t very suitable for materials science, but honestly, its arguments
didn’t convince me.

Figure 25: Two distributions of chemistry: layers and atomic lattice. In both cases, the content varies from
A to B but the histograms of distributions are quite different.

So, what is ICA? Like PCA, it involves rotations in a multidimensional factor space, but the way the basis
is rotated differs. First and foremost, it’s essential to note that ICA always requires PCA as a preprocessing
step. It begins by extracting the components with the highest variance, i.e., the principal components.
However, it then does something unusual: it normalizes all components to have unity variance. The process
called whitening equalizes the components, making it impossible to determine which ones are more principal
and which are less. Subsequently, ICA once again rotates the basis, this time aiming to identify components
with the highest non-Gaussianity. Mathematically, it can be demonstrated that such components are most
likely independent of each other.

You might assume that ICA always produces independent components, while PCA does not. However,
that’s not entirely accurate. In most cases, PCA components are also independent of each other, whereas
ICA doesn’t always yield completely independent components. The difference lies more in the algorithms
used for rotation within the factor space.

To highlight this difference, I generated two model datasets in which the composition smoothly tran-
sitions from phase A to phase B. In the first set, A and B represent layers, while in the second one, they
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appear as an atomic lattice. The crucial point is that the chemistry distribution from A to B is almost
Gaussian for the lattice but strongly non-Gaussian for the layers.

For each pixel of the data, I generated a spectrum (consisting of 1000 channels) corresponding to its
A/B fraction and added a significant amount of noise to obscure the original chemistry. When examining
any energy slice of the generated spectrum-images, it becomes challenging to distinguish between A and B
due to the noise. To make the maps visible, one must apply either PCA or ICA. Then, I made a remarkable
observation: PCA and ICA perform equally well for the layers but not for the lattice. For the lattice,
ICA fails entirely. This is because A and B are distributed as Gaussian in the lattice, and ICA cannot
differentiate it from noise.

In conclusion, the success of ICA in materials science strongly depends on the inherent data distributions,
which can vary widely in the field of materials science. In contrast, PCA does not concern itself with the
distributions; it simply captures variations that exceed the noise level. Thus, the application of ICA in
materials science is much more limited than, for instance, in speech recognition.

Figure 26: PCA reveals distribution maps in both layers and lattice. ICA does the job for layers only while
fails for lattice.

Nogami:
I see that PCA and ICA results for layers are not identical. ICA fits better to that shown in a previous
picture. Is ICA more accurate here? Thank you very much.

Pavel:
Please take into account that PCA and ICA do not know were is your phase A where is B. They just label
components randomly. If you swap colors in the figure, the PCA and ICA results will be identical.

Bernhard:
Thanks for this humorous and enlightening post. It is interesting to see the difference in behavior between
the two techniques demonstrated like that. Is there also a counter example where ICA would clearly beat
PCA?

19



Figure 27: Same PCA and ICA treatments but the noise level is increased 8 times.

Pavel:
That’s a good point. I believe it might beat. According my general understanding, a very weak (varying

far below the noise level) but strongly non-Gaussian signal could be retrieved by ICA but not by PCA,
which is sensitive to the signal variance only. I tried to increase the noise 8 times´and repeat PCA and ICA
treatment. This time PCA works quite unsurely and ICA can slightly improve its results when rotating 3
principal compounds. However, the effect is unstable as ICA requires PCA as pre-treatment in any case.

3.3 Used codes

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.stats import kurtosis

4

5 Size =32

6

7 def lor(R,G,C):

8 return G/((R/Size*C)**2+(G/2) **2)

9

10 def rad(X,Y):

11 return np.sqrt(X**2+Y**2)

12

13 def gaussian(x, mu, sig):

14 return np.exp(-np.power((x - mu)/sig , 2.) / 2)

15

16 def signal(D,Start ,End ,Fract ,NoiseSigma):

17 Sigmas =5 #+-sigma in range

18 Sig =(End -Start)/2/ Sigmas

19 Mu = (Start +End)/2

20

21 spec =np.arange(D)

22 spec = gaussian(spec ,Mu ,Sig)*Fract

23

24 if NoiseSigma >0:

25 spec += np.random.normal(0,NoiseSigma ,D)

26

27 return spec

28

29 def make_SI_2feature(im ,Depth ,Sigma):

30 Height ,Width =im.shape

31 imSI =np.zeros((Height ,Width ,Depth))

32

33 for y in range(Height):

34 for x in range(Width):

35 #print(x,y)

36

37 Frac1 = (1+im[y,x])/2

38 Frac2 =1-Frac1

39 spec = signal(Depth ,0,Depth/2,Frac1 ,Sigma) #add 1st feature

40 spec += signal(Depth ,Depth/2,Depth ,Frac2 ,Sigma) #add 2nd

41 imSI[y,x,:] =spec
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42 return imSI

43

44 #simulate atomic lattice

45 X,Y=np.ix_(np.arange(Size),np.arange(Size))

46 G =2.55

47 C =2.85

48 cell = lor(rad(X,Y),G,C)

49 cell -= lor(rad(Size -X-1,Size -Y-1),G,C)

50

51 cell2 = np.fliplr(cell)

52 cell3 = np.flip(cell)

53 cell4 = np.flip(cell2)

54 motiv = np.zeros ((2*Size ,2* Size))

55 motiv[:Size ,:Size] = cell

56 motiv[:Size ,Size :2* Size] = cell2

57 motiv[Size :2*Size ,Size :2* Size] = cell3

58 motiv[Size :2*Size ,:Size:] =cell4

59

60 atoms = np.zeros ((4*Size ,4* Size))

61 atoms [:2*Size ,:2* Size] =motiv

62 atoms [2* Size :4* Size :,:2* Size] =motiv

63 atoms [:2*Size ,2* Size :4* Size] =motiv

64 atoms [2* Size :4*Size ,2* Size :4* Size] =motiv

65 atoms /=np.max(atoms)

66 plt.imshow(atoms)

67 plt.show()

68

69 print(’phase A’,atoms[0,0],’phase B’,atoms[Size -1,Size -1])

70 dist=cell.flatten ()

71 plt.hist(dist ,bins=’auto’)

72 print(’kurtosis ’,kurtosis(dist))

73 plt.show()

74

75 #simulate layers

76 layer =np.ones ((4*Size ,Size))

77 rand =0.2*np.random.rand (4*Size ,Size) #small deviations to make histogram more realistic

78 layer1 =layer *(lor(Y,G,C) - lor(Size -Y-1,G,C)) +rand

79 layer2 =layer*(-lor(Y,G,C) + lor(Size -Y-1,G,C)) +rand

80 layers =np.zeros ((4*Size ,4* Size))

81 layers [:,:Size] =layer1

82 layers[:,Size :2* Size] =layer2

83 layers [:,2* Size :3* Size] =layer1

84 layers [:,3* Size :4* Size] =layer2

85 layers /=np.max(layers)

86

87 plt.imshow(layers)

88 plt.show()

89

90 print(’phase A’,layers [0,0],’phase B’,layers[0,Size -1])

91 dist=layers.flatten ()

92 plt.hist(dist ,bins=’auto’)

93 print(’kurtosis ’,kurtosis(dist))

94 plt.show()

95

96 Depth =1000

97 Sigma =0.5

98

99 #spectrum -images from lattice and layers

100 layersSI = make_SI_2feature(layers ,Depth ,Sigma)

101 plt.plot(np.arange(Depth),layersSI [0,0,:])

102 plt.plot(np.arange(Depth),layersSI [0,31,:])

103 plt.plot(np.arange(Depth),layersSI [0,50,:])

104 plt.show()

105 plt.imshow(layersSI [: ,: ,250])

106 plt.show()

107 np.save(’layers_s0_5 ’,layersSI)

108

109 atomsSI = make_SI_2feature(atoms ,Depth ,Sigma)

110 plt.plot(np.arange(Depth),atomsSI [0,0,:])

111 plt.plot(np.arange(Depth),atomsSI [0,31 ,:])

112 plt.plot(np.arange(Depth),atomsSI [0,50 ,:])

113 plt.show()
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114 plt.imshow(atomsSI [: ,: ,250])

115 plt.show()

116 np.save(’atoms_s0_5 ’,atomsSI)

Listing 2: Generation of model datasets

1 import numpy as np

2 from sklearn.decomposition import PCA

3 from sklearn.decomposition import FastICA

4 import matplotlib.pyplot as plt

5 from scipy.stats import kurtosis

6 import math as m

7

8 def plot_graph(data):

9 L=len(data)

10 plt.plot(np.arange(L),data)

11

12 def extract_var(data):

13 L=data.shape [1]

14 V =np.zeros(L)

15 for i in range(L):

16 var =np.var(data[:,i]. flatten ())

17 V[i] =m.log(var)

18 return V

19

20 def extract_kurtosis(data):

21 L=data.shape [1]

22 K =np.zeros(L)

23 for i in range(L):

24 kurt =kurtosis(data[:,i]. flatten ())

25 K[i] =kurt

26 return K

27

28 def sort_by_kurtosis(data ,kurt):

29 L =data.shape [1]

30 data_sorted =np.zeros(data.shape)

31 for i in range(L):

32 MaxKur = np.argmax(abs(kurt))

33 data_sorted [:,i] =data[:,MaxKur]

34 kurt[MaxKur] =0

35 return data_sorted

36

37

38 filename ="atoms_s0_5"#’atoms_s0_5 ’

39 X =np.load(filename+’.npy’)

40 Width =X.shape [0]

41 Depth =X.shape [2]

42 X.shape =(Width*Width ,Depth)

43 print(’input data’,X.shape)

44

45 Comp =100 #should be < Depth but large enough

46 #to leave enough dimension for ICA to rotate freely

47

48 pca = PCA(n_components=Comp)

49 pca.fit(X)

50 Y =pca.transform(X)

51 print(’PCA data’,Y.shape)

52 Var =extract_var(Y)

53 plot_graph(Var)

54 plt.show()

55

56 ica = FastICA(n_components=Comp ,max_iter =1000)

57 ica.fit(X) #LONG!!!,

58 Z =ica.transform(X)

59 print(’ICA rotated data’,Z.shape)

60 Kurt = extract_kurtosis(Z)

61 plot_graph(Kurt)

62 ZS =sort_by_kurtosis(Z,Kurt)

63 KurtS = extract_kurtosis(ZS)

64 plot_graph(KurtS)

65 plt.show()

66
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67 Y.shape =(Width ,Width ,Comp)

68 PCAimage = Y[:,:,0]

69 plt.imshow(PCAimage)

70 plt.show()

71 np.save(filename+’_pca.npy’,Y)

72

73

74 ZS.shape =(Width ,Width ,Comp)

75 ICAimage = ZS[:,:,0]

76 plt.imshow(ICAimage)

77 plt.show()

78 np.save(filename+’_ica.npy’,Y)

Listing 3: PCA and ICA analysis of datasets

4 Accuracy of PCA

4.1 James Bond tells the story

Once, I asked James Bond where his most difficult mission took place—was it in Turkey, Mexico, or Russia?
“In Great Britain, when I was promoted to the central analytical office of MI-6,” he answered.
“Were the headquarters suddenly attacked by an army of foreign spies?”
“I would have wished for that. Instead, I had to read endless reports from other secret agents abroad

and try to understand what was going on.”
“Was that so difficult?”
“Mission impossible. Imagine this: some agent informs us that State X is planning to attack the UK on

a certain date with all its ground, naval, and air forces. Such an important message requires verification.
Another agent confirms the dreadful plans of State X but claims they intend to attack State Y, not the
UK. The third agent shares with us that State Y will indeed be soon invaded, but by State Z, not State X.
What would you do when receiving hundreds of such messages?”

“I would kill myself. “
“I was on the verge of doing that. However, my older colleague advised me to relax, as he thought

nobody was going to attack. We then developed a specific approach to understand the agents’ reports.
You know, each agent is 100% confident in their information. However, this confidence is often subjective.
We refer to this subjectivity as noise. Moreover, competing countries can intentionally fabricate and issue
disinformation, which we call bias. All we need to do is collect a vast amount of data, calculate the noise
(subjectivity) distribution, subtract the bias (disinformation), and extract the truth.”

“You’re suggesting that you calculate this using specific formulas? What might they look like?”
“No further comments. I can only provide you with one reference (Secret reference). If you read it

carefully, you might gain an impression of how we handle big data.”

4.2 Evaluate accuracy of PCA

This conversation completely changed my understanding of how a secret service functions in reality. To delve
deeper into the topic, I pursued Bond’s reference discovering an article by Noaz Nadler, a mathematician
at the Weizmann Institute of Science. I thoroughly studied the article and attempted to verify its findings
with some simulated spectrum-images.

First, I constructed a simple dataset consisting of 32 by 32 pixels, each comprising 64 spectroscopic
channels. The signal exhibited a rectangular shape and could be either positive or negative, resembling
a characteristic line of a certain chemical element being emitted or absorbed. This signal variation is
symmetric with a zero mean, simplifying the estimation process. The left half of the set was intended to
represent the positive signal, while the right half represented the negative signal. One can map such a signal
by summing all signal channels or by attempting to retrieve its distribution with PCA. Both methods yield
identical results in the absence of noise. However, when Gaussian noise is introduced, PCA significantly
outperforms simple summation. The result is still not perfect, but it appears quite reasonable.

Now, a question arises: what is our criterion for estimating the accuracy of PCA? The simplest approach
is to compare the shape of the PCA-recovered signal with the true one, which is precisely known in this
case. Let’s sum the quadratic deviations over all channels and denote it as ∆2. Note that the appearance
of the PCA-reconstructed maps correlates nicely with such a criterion: fewer deviations in the signal shape
result in less noisy maps.
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Figure 28: James Bond carefully evaluates all available information.

Figure 29: Dataset with a simpolest signal variation: positive signal at the left, negative at the right.

The cited paper suggests that PCA accuracy depends on the following parameters: the number of pixels
m (32x32=1024 in our case), the number of channels n (64), the variance of noise σ2, and the variance
of the true, noise-free signal α2. Calculating α2 might not be straightforward. I’ll just mention that it is
exactly 1 in our case. Those interested in verifying this should refer to Exercise 1.

The paper then demonstrates that an error in PCA reconstruction is described very simply:
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Figure 30: Signal profile is restored not perfectly by PCA. More its shape deviates from the true reference,
more noisy are reconstructed maps.

Figure 31: Deviation of the PCA-reconstructed signal shape from the truth as a function of noise σ2.

∆2 =
n

m

σ2

α2
(1)

However, this simplicity holds true only for small σ2. The subsequent statement of the cited paper is
even more instructive. When σ2 reaches a certain threshold, accuracy collapses to zero, ∆2 is undefined.
There is no useful information in the dataset anymore; at least, nothing can be extracted by such a powerful
method as PCA. This situation is reminiscent of James Bond’s troubles when too many contradictory reports
actually provide no useful information.

The threshold for the loss of information is:

σ2

α2
=

√
m

n
(2)

At this point, I apologize for inundating you with too many formulas. However, as you see in the modern
world, even secret agents are increasingly relying on formulas rather than old-fashioned master keys in their
work.

Now, back to our business! I validated the theory by altering the number of pixels m and the noise
level σ2 in my dataset. In all cases, PCA accuracy improved as m increased or σ2 decreased, precisely as
predicted. Moreover, when the combination of parameters reached the magic Nadler ratio (2), the maps
became irretrievable.
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Figure 32: PCA-reconstructed maps when varying noise (columns) and number of pixels(rows).

For those interested in further testing the Nadler model, I have prepared Exercises 2 and 3. The Python
codes are attached. Have fun!

4.3 Used codes

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from sklearn.decomposition import PCA

4 import math as m

5

6 def add_gaussian_noise(SI, Mu, Sigma2):

7 Sigma =m.sqrt(Sigma2)

8 return (SI + np.random.normal(Mu ,Sigma ,SI.shape))

9

10 #consruct SI dataset with zero mean

11 def build_dataset(SI,Signal_ch ,Signal):

12 Pixels = SI.shape [0]

13 Channels = SI.shape [2]

14 Channel_I =int(Channels /2)

15 Channel_F =Channel_I + Signal_ch

16

17 SI[:,:int(Pixels /2),Channel_I:Channel_F] =Signal

18 SI[:,int(Pixels /2):Pixels ,Channel_I:Channel_F] =-Signal

19

20 return SI

21

22 #makes PCA decomposition with ’Comp’ components

23 #and return maps of these components

24 def make_pca(SI,Comp ,return_vectors=False):

25 Height ,Width ,Depth =SI.shape

26



26 SI.shape =( Height*Width ,Depth)

27 pca = PCA(n_components=Comp)

28 pca.fit(SI)

29 maps =pca.transform(SI)

30 maps.shape = (Height ,Width ,Comp)

31 if return_vectors ==True:

32 evec =pca.components_

33 return maps ,evec

34 else: return maps

35

36 #supress amigioity of the component sign

37 def swop_comp(denoised):

38 Width =denoised.shape [1]

39 left_half =denoised [:,:int(Width /2)].copy()

40 if np.mean(left_half) <0:

41 denoised [:,:int(Width /2)] = denoised[:,int(Width /2):]

42 denoised[:,int(Width /2):] =left_half

43 return denoised

44

45 #supress amigioity of the eigenvector sign

46 def swop_evec(evec ,Signal_ch):

47 Channels =len(evec)

48 Middle = int(Channels /2)

49 if np.mean(evec[Middle:Middle+Signal_ch ]) <0:

50 evec = -evec

51 return evec

Listing 4: Module of standard functions used in this section

1 """

2 INSTALL FIRST MODULE CONSISTING ALL TYPICAL FUNCTIONS ’

3 """

4 from functions import *

5

6 Channels =64

7 Pixels =1024

8 Signal_ch =4

9 Signal =0.5

10

11 Size= int(m.sqrt(Pixels))

12 SI = np.zeros((Size ,Size ,Channels))

13 SI = build_dataset(SI,Signal_ch ,Signal)

14

15 fig , axs = plt.subplots(2, 2)

16 images = []

17

18 Middle = int(Channels /2)

19

20 #noise -free dataset

21 map_noise_free = np.sum(SI[:,:,Middle:Middle+Channels],axis =2)

22 images.append(axs[0,0]. imshow(map_noise_free ,vmin=-1,vmax =1))

23 denoised =make_pca(SI ,1)[:,:,0]

24 denoised = swop_comp(denoised)

25 print(’noise -free set: variance of pca component ’,np.var(denoised))

26 images.append(axs[0,1]. imshow(denoised ,vmin=-1,vmax =1))

27

28 #add noise dataset

29 Sigma2 =1

30 SI.shape =(Size ,Size ,Channels)

31 SI = add_gaussian_noise(SI ,0,Sigma2)

32 map_noise = np.sum(SI[:,:,Middle:Middle+Channels],axis =2)

33 images.append(axs[1,0]. imshow(map_noise ,vmin=-1,vmax =1))

34 denoised =make_pca(SI ,1)[:,:,0]

35 denoised = swop_comp(denoised)

36 print(’noisy set: variance of pca component ’,np.var(denoised))

37 images.append(axs[1,1]. imshow(denoised ,vmin=-1,vmax =1))

38

39 plt.show()

Listing 5: Integrated and PCA-reconstructed maps for the noise-free and noisy sets.

1 """
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2 INSTALL FIRST MODULE CONSISTING ALL TYPICAL FUNCTIONS ’

3 """

4 from functions import *

5

6 Channels =64

7 Pixels =1024

8 Signal_ch =4

9 Signal =0.5

10

11 Size= int(m.sqrt(Pixels))

12

13 fig , axs = plt.subplots(2, 4)

14 images = []

15

16 #loop changing noise

17 Signal_ch =4

18 Signal =0.5

19

20 Sigma2 =0.5

21 for i in range (4):

22 if i==0: Sigma2 =0

23 elif i==1: Sigma2 =0.5

24 else: Sigma2 *=2

25 print(’Sigma2 ’,Sigma2)

26

27 SI = np.zeros((Size ,Size ,Channels))

28 SI = build_dataset(SI,Signal_ch ,Signal)

29 SI = add_gaussian_noise(SI ,0,Sigma2)

30 denoised ,evec =make_pca(SI ,1, return_vectors=True)

31 evec=evec.flatten ()

32 evec =swop_evec(evec ,Signal_ch)

33 if i==0: rvec=evec

34 denoised = swop_comp(denoised)

35 images.append(axs[0,i].plot(np.arange(Channels),rvec))

36 images.append(axs[0,i].plot(np.arange(Channels),evec))

37 axs[0,i]. set_xlim ([28 ,40])

38 axs[0,i]. set_ylim ([ -0.1 ,0.6])

39 images.append(axs[1,i]. imshow(denoised ,vmin=-1,vmax =1))

40 axs[1,i]. set_axis_off ()

41

42 plt.show()

Listing 6: Correlation between PCA-reconstructed signal shapes (eigenvectors) and PCA-reconstructed
maps.

1 """

2 INSTALL FIRST MODULE CONSISTING ALL TYPICAL FUNCTIONS ’

3 """

4 from functions import *

5

6 Channels =64

7 Signal_ch =4

8 Signal =0.5

9

10 fig , axs = plt.subplots(5, 5)

11 fig.subplots_adjust(left =0.25, right =0.75)

12 images = []

13

14 #loop changing Sigma2 from 1 to 16 (columns)

15 # Pixels from 16384 to 64 (rows)

16 Pixels =64

17 for j in range (5):

18 if j>0:

19 Pixels *=4

20 Sigma2 =1

21 Size= int(m.sqrt(Pixels))

22 for i in range (5):

23 if i>0: Sigma2 *=2

24 print(’pixels ’,Pixels ,’sigma2 ’,Sigma2)

25

26 SI = np.zeros((Size ,Size ,Channels))

27 SI = build_dataset(SI,Signal_ch ,Signal)

28



28 SI = add_gaussian_noise(SI ,0,Sigma2)

29 denoised =make_pca(SI ,1)[:,:,0]

30 denoised = swop_comp(denoised)

31 images.append(axs[4-j,i]. imshow(denoised ,vmin=-1,vmax =1))

32 axs[4-j,i]. set_axis_off ()

33

34 plt.show()

Listing 7: PCA-reconstructed maps when noise (columns) and number of pixels (rows) are varied.

4.4 Exercise 1 : Variance of noise-free PCA component

You can perceive the counts at each spectroscopic channel as a kind of vectors in multidimensional space.
Since the channels are independent, these vectors form the orthogonal basis. PCA identifies the direction
of the highest variance of the signal, which, in our case, would be the vector summation of the channel
vectors.

Figure 33: Contributions from different spectroscopic channels are summed vectoraly in the principal com-
ponent.

As wisely noted by Pythagoras, the resulting squared length is merely the sum of the squared lengths
of the individual contributions. For each set of four channels, we have a signal of 0.5. Their Pythagorean
summation gives 4 ∗ (0.5)2 = 1. This represents the variance along the direction of the 1st principal
component. You can verify this in the listing of the provided Python script for the noise-free set.

4.5 Exercise 2 : Effect of the number of channels on the PCA accuracy

According to formula (1), we might anticipate that PCA error will increase with an increase in the number
of spectroscopic channels n. However, this is a fictive dependence resulting from our definition of the
cumulative error ∆2. We defined ∆2 as the sum of squared deviations over all available channels, whereas,
in reality, our interest lies only in the channels where the signal appears. Thus, nothing fundamentally
changes as long as ∆2 is proportional to n/m.

However, this proportionality breaks down with a further increase in σ2 or n/m. Upon reaching the
threshold (2), the signal once again becomes irretrievable.

1 """

2 INSTALL FIRST MODULE CONSISTING ALL TYPICAL FUNCTIONS ’

3 """

4 from functions import *

5

6 Pixels =1024

7 Signal_ch =4

8 Signal =0.5

9 Sigma2 =1

10

11 Size= int(m.sqrt(Pixels))

12

13 fig , axs = plt.subplots(1, 5)

14 images = []

15

16 #loop changing Channels from 64 to 16384 (columns)

17 Channels =64

18 for i in range (5):

19 if i>0: Channels *=2
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Figure 34: Increase of the number of analysed channels n initially has a little effect on the PCA-reconstructed
maps but finally result in the loss of information.

20 print(’Channels ’,Channels)

21

22 SI = np.zeros((Size ,Size ,Channels))

23 SI = build_dataset(SI,Signal_ch ,Signal)

24 SI = add_gaussian_noise(SI ,0,Sigma2)

25 denoised =make_pca(SI ,1)[:,:,0]

26 denoised = swop_comp(denoised)

27 images.append(axs[i]. imshow(denoised ,vmin=-1,vmax =1))

28 axs[i]. set_axis_off ()

29

30 plt.show()

Listing 8: PCA-reconstracted maps when number of channels is varied.

4.6 Exercise 3 : Effect of the spectra dispersion on the PCA accuracy

You know, experimentalists always have the option to alter the dispersion of the spectrometer, such as
reducing the covered energy/wavelength range while improving the resolution. The crucial question is, how
will this affect accuracy of PCA?

If we double the number of channels for the registered signal, the counts at each channel will be halved,
and their squares will be reduced by a factor of 4. However, since we have twice as many channels, the
summed variance of the principal component α2 will only be reduced by a factor of 2.

It gets more complicated with the noise. Assuming the Poissonian nature of the noise and a large
number of counts, the variance of the noise σ2 will increase by a factor of 2. According to formula (1),
PCA accuracy degrades by a factor of 4. However, this is not entirely correct if we are interested only in
the integral signal. We now have twice as many channels to integrate, so the accuracy of the total signal
extraction will be degraded by a factor of 2, not 4.

Nevertheless, the threshold (2) will be met with a noise variance four times smaller than before because
the collapse of information is independent on how many channels we intend to integrate afterward.

Similar exercises can be conducted by decreasing the number of channels per signal.
The conclusion is following: for a better extraction of the total signal, it is more favorable to reduce the

number of channels per signal. This is probably not very surprising, as such a strategy of noise reduction
is beneficial even if you do not apply PCA.

Of course, if you are interested in the shape of the signal, not only in its strength, you must keep a
certain number of channels available. However, set this number at the minimum if you want to combat
noise effectively.

4.7 Used codes

1 """

2 INSTALL FIRST MODULE CONSISTING ALL TYPICAL FUNCTIONS ’

3 """

4 from functions import *
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Figure 35: In case you wish to register the total signal strength (not signal shape), it is worse to reduce the
number of channels per signal. The opposite strategy will quickly result in the information loss.

5

6 Channels =64

7 Pixels =1024

8 Sigma2 =1

9

10 Size= int(m.sqrt(Pixels))

11

12 fig , axs = plt.subplots(2, 3)

13 images = []

14

15 #loop changing dispersion from 4 channel/signal to 1 channel/signal (columns)

16 Signal_ch =4

17 Signal =0.5

18 for i in range (3):

19 if i>0:

20 Signal_ch =int(Signal_ch /2)

21 Signal *=2

22 print(’Signal_ch ’,Signal_ch ,’Signal ’,’alpha2 ’,Signal_ch*Signal **2)

23

24 SI = np.zeros((Size ,Size ,Channels))

25 SI = build_dataset(SI,Signal_ch ,Signal)

26 SI = add_gaussian_noise(SI ,0,Sigma2)

27 denoised =make_pca(SI ,1)[:,:,0]

28 denoised = swop_comp(denoised)

29 images.append(axs[0,i]. imshow(denoised ,vmin=-1,vmax =1))

30 axs[0,i]. set_axis_off ()

31

32 #loop changing dispersion from 4 channel/signal to 16 channel/signal (columns)

33 Signal_ch =4

34 Signal =0.5

35 for i in range (3):

36 if i>0:

37 Signal_ch *=2

38 Signal /=2

39 print(’Signal_ch ’,Signal_ch ,’Signal ’,Signal ,’alpha2 ’,Signal_ch*Signal **2)

40

41 SI = np.zeros((Size ,Size ,Channels))

42 SI = build_dataset(SI,Signal_ch ,Signal)

43 SI = add_gaussian_noise(SI ,0,Sigma2)

44 denoised =make_pca(SI ,1)[:,:,0]

45 denoised = swop_comp(denoised)

46 images.append(axs[1,i]. imshow(denoised ,vmin=-1,vmax =1))
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47 axs[1,i]. set_axis_off ()

48

49 plt.show()

Listing 9: PCA-reconstructed maps with changing spectrometer dispersion.

Ivan:
Thank you for the good example. However, I think the topic is not completely clarified. Suppose that we
have an atomic lattice with two kinds of atoms, A and B. But at one cell, atom B is replaced for atom C.
Assume that PCA sucessfully denoises A-B lattice but doesnot retrieve a singular atom C. The formula (1)
in your post advises to increase the number of pixels to improve accuracy. But even if we scan over ten times
more A-B cells, that would not help to uncover a singular C atom. This violates a common sense. Thus, I
think the theory is incomplete and must be extended to the case of multicompound system and account for
interaction among compounds.

Pavel:
The theory is complete, just its presentation in the post is fragmentary. You are right, in multi-component
sets, the things can be a bit more tricky.

To model the situation you described, I introduced a small 8x8 pixels fragment into the 32x32 pixel set.
In this fragment, quite different spectroscopy channels are activated, as if another chemical element appears
or disappears. PCA is expected to detect the second principal component, which varies within this small
fragment only. This is indeed the case in the noise-free case.

Figure 36: Two-component dataset when the 2nd component occupies only 1/16 fraction of the whole area.

However, when noise is added, the second component suddenly becomes irretrievable. Why we observe
the first component but not the second one? At the first glance, the parameters of formula (1) have not
changed - added signal is of the same strength, the total number of pixel has not changed, and the noise
level is same as for the first component.

Upon careful examination, it is revealed that the noise-free data distribution in the second component
differs drastically from that in the first one. This is because the second component counts to zero in most
pixels, namely 1024− 64 = 960 pixels. Therefore, although the signal strength is same in both components,
the data variance α2 in the second component would be 1024/16 = 16 less than that in the first one. This
easy to notice if we recall that the variance is the average squared deviation from the mean (zero in this
case). According to formula (2) the second component would reach the Nadler threshold at 16 times lower
noise variance σ2 than the first component.

You can verify this by examining the figure where σ2 of 0.5 still appears acceptable for uncovering the
variation of the first component but fully suppresses extraction of the second component. This limitation
cannot be overcome by scanning over the larger area. In that case, m does increase but the variance of the
second component decreases proportionally.
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Figure 37: The data distribution in the 2nd component is much sharper than that in the 1st one. This is
because 2nd component is zero in most of the pixels.

What would genuinely help is an increase in m through more dense scanning. The last column in the
figure represents the same dataset with sampling increased four times. You can observe that both the first
and second components are successfully retrieved now. While m increases by 16 times, α2 remains the same
as the number of pixels in the fragment increases proportionally. It is easy to confirm with formula (2) that
the second component is now below the Nadler threshold.

1 import numpy as np

2

3 #consruct SI dataset with zero mean and second component varying in small fragment

4 def build_dataset_2comp(SI,Signal_ch ,Signal ,Components_ratio):

5 Size = SI.shape [0]

6 Channels = SI.shape [2]

7 Middle =int(Size /2)

8 Smaller_cell =int(Size*Components_ratio)

9 Half_cell = int(Smaller_cell /2)

10

11 #variation of 1st component

12 Channel_I1 =int(Channels /2)

13 Channel_F1 =Channel_I1 + Signal_ch

14 SI[:,:Middle ,Channel_I1:Channel_F1] =Signal

15 SI[:,Middle:Size ,Channel_I1:Channel_F1] =-Signal

16

17 #variation of 2nd component

18 Channel_I2 =int(Channels /4)

19 Channel_F2 =Channel_I2 + Signal_ch

20 SI[: Smaller_cell ,Middle -Half_cell:Middle ,Channel_I2:Channel_F2] =Signal

21 SI[: Smaller_cell ,Middle:Middle+Half_cell ,Channel_I2:Channel_F2] =-Signal

22

23 #remove 1st component from the small cell

24 SI[: Smaller_cell ,Middle -Half_cell:Middle+Half_cell ,Channel_I1:Channel_F1] =0

25

26 return SI

27

28 #simpler swop of two components

29 def swop_comp2(denoised):

30 Width =denoised.shape [1]

31 left_half =denoised [:,:int(Width /2)].copy()

32 if np.mean(left_half) <0:

33 denoised [:,:int(Width /2)] *=( -1)
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34 denoised[:,int(Width /2):Width] *=(-1)

35 return denoised

Listing 10: Extra standard functions (functions2).

1 """

2 INSTALL FIRST MODULE CONSISTING ALL TYPICAL FUNCTIONS ’

3 """

4 from functions import *

5 from functions2 import *

6

7

8 Pixels =1024

9 Channels =64

10 Size= int(m.sqrt(Pixels))

11 Signal_ch =4

12 Signal =0.5

13 Sigma2 =0.5

14

15 fig , axs = plt.subplots (2,3)

16 #fig.subplots_adjust(left =0.25, right =0.75)

17 images = []

18

19 SI = np.zeros((Size ,Size ,Channels))

20 SI = build_dataset_2comp(SI ,Signal_ch ,Signal ,0.25)

21

22 #pca of noise -free set

23 denoised_2comp = make_pca(SI ,2)

24 for k in range (2):

25 denoised = denoised_2comp [:,:,k]

26 print(’noise -free set: variance of pca component ’,k+1,’:’,round(np.var(denoised) ,4))

27 images.append(axs[k,0]. imshow(denoised ,vmin=-1,vmax =1))

28 axs[k,0]. set_axis_off ()

29

30

31 #pca of noisy set

32 SI.shape =(Size ,Size ,Channels)

33 SI = add_gaussian_noise(SI ,0,Sigma2)

34 denoised_2comp = make_pca(SI ,2)

35 for k in range (2):

36 denoised = denoised_2comp [:,:,k]

37 if k==0:

38 denoised [:int(Size /4),int(Size *3/8):int(Size *5/8)] =swop_comp2(denoised [:int(Size

/4),int(Size *3/8):int(Size *5/8)])

39 if k==1:

40 denoised =swop_comp2(denoised)

41 images.append(axs[k,1]. imshow(denoised ,vmin=-1,vmax =1))

42 axs[k,1]. set_axis_off ()

43

44 #pca of noisy set with increased sampling

45 Pixels = 16384

46 Size= int(m.sqrt(Pixels))

47 SI = np.zeros((Size ,Size ,Channels))

48 SI = build_dataset_2comp(SI ,Signal_ch ,Signal ,0.25)

49

50 SI.shape =(Size ,Size ,Channels)

51 SI = add_gaussian_noise(SI ,0,Sigma2)

52 denoised_2comp = make_pca(SI ,2)

53 for k in range (2):

54 denoised = denoised_2comp [:,:,k]

55 if k==0:

56 denoised [:int(Size /4),int(Size *3/8):int(Size *5/8)] =swop_comp2(denoised [:int(Size

/4),int(Size *3/8):int(Size *5/8)])

57 if k==1:

58 denoised =swop_comp2(denoised)

59 images.append(axs[k,2]. imshow(denoised ,vmin=-1,vmax =1))

60 axs[k,2]. set_axis_off ()

61

62 plt.show()

63

64 #histograms of noise -free components

65 bins =100
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66 plt.hist(denoised_2comp [:,:,0]. flatten (),bins=bins)

67 plt.hist(denoised_2comp [:,:,1]. flatten (),bins=bins)

68 plt.show()

Listing 11: PCA-reconstructed maps of two-component data set where the second component is spatially
strongly localised.

Ivan:
There is also so called “local PCA” to deal with such an issue. Can you comment ?

Pavel:
Yes. The ”local PCA” introduced by Ishizuka and Watanabe in the conference in Prague in 2014 was

designed exactly for the described situation when some components are expected to be strongly spatially
localised. The authors suggested to break the whole dataset on equal fragments, like a grid and perform
PCA in each fragment independently.

Let’s apply this strategy to our example and divide the set into smaller fragment. Please forgive me for
cutting a bit the edges of the set, otherwise programming would be too complicated. You see from figure
below that the local PCA indeed precludes the loss of the second component but makes the first component
more noisy. I will try to explain why it happens.

At small σ2 the accuracy of the second component extraction is not changed by local PCA. Indeed,
m is decreased 16 times while α2 is 16 time increased, thus formula (1) remains balanced. However, the
situation is different at high σ2 when formula (2) should be applied. It is easy to see that the right part of
(2) decreases slower with m when comparing to the left one. As a result, the larger noise level σ2 is needed
to reach the Nadler threshold for the loss of information.

Such strategy is however not good for the dominant first component. The local PCA does not profit
from averaging over the large area and the first component is more affected by noise. This peculiarity of
local PCA is highlighted in the Table below.

Figure 38: Two-component dataset treated by local PCA.

1st component 2nd component
PCA σ2 < 4 σ2 < 1/4

local PCA σ2 < 1 σ2 < 1

Table 1: Requirement to preserve information for a given example. Classical PCA preserves the 1st com-
ponent till the noise level 4 while dissolves the second component already at the level 1/4. The local PCA
equalizes the chances for both components.

To summarize: the local PCA can be useful however requires a great care - it improves one things while
worsening the others. I would recommend the following:

1. Apply it only when datasets consist of periodic fragments like atomic lattice and you have a strong
suspicion that the unit cells are not identical.
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2. Set the PCA fragments approximately equal to the unit cell size. The smaller size would add more
noise to the PCA results.

3. Always compare to the PCA of the whole set.

1 """

2 INSTALL FIRST MODULE CONSISTING ALL TYPICAL FUNCTIONS ’

3 """

4 from functions import *

5 from functions2 import *

6

7 def loop_pca_vertically(SI,denoised_2comp ,IniX ,FinX ,Subsize):

8 for j in range (4):

9 IniY = int(j*Subsize)

10 FinY = int((j+1)*Subsize)

11 subSI =SI[IniY:FinY ,IniX:FinX ,:]. copy()

12 sub_denoised_2comp = make_pca(subSI ,2)

13

14 for k in range (2):

15 denoised_fragm =sub_denoised_2comp [:,:,k]

16 denoised_fragm =swop_comp2(denoised_fragm)

17 denoised_2comp[IniY:FinY ,IniX:FinX ,k] = denoised_fragm

18

19 return denoised_2comp

20

21 def treat_locally(SI):

22 Size =SI.shape [0]

23 denoised_2comp =np.zeros((Size ,Size ,2))

24 Subsize =int(Size /4)

25

26 #central row

27 IniX =int (3/8* Size)

28 FinX =int (5/8* Size)

29 denoised_2comp = loop_pca_vertically(SI,denoised_2comp ,IniX ,FinX ,Subsize)

30 #retrieved component in this fragment is actually the 2nd one , swop it:

31 buffer = denoised_2comp [:Subsize ,IniX:FinX ,0]. copy()

32 denoised_2comp [:Subsize ,IniX:FinX ,0] = denoised_2comp [:Subsize ,IniX:FinX ,1]

33 denoised_2comp [:Subsize ,IniX:FinX ,1] = buffer

34

35 #left row

36 IniX =int (1/8* Size)

37 FinX =int (3/8* Size)

38 denoised_2comp = loop_pca_vertically(SI,denoised_2comp ,IniX ,FinX ,Subsize)

39 #add the average

40 denoised_2comp [:,IniX:FinX ,0] +=1

41

42 #right row

43 IniX =int (5/8* Size)

44 FinX =int (7/8* Size)

45 denoised_2comp = loop_pca_vertically(SI,denoised_2comp ,IniX ,FinX ,Subsize)

46 #add the average

47 denoised_2comp [:,IniX:FinX ,0] -=1

48

49 return denoised_2comp

50

51

52 Pixels =1024

53 Channels =64

54 Size = int(m.sqrt(Pixels))

55 Signal_ch =4

56 Signal =0.5

57 Sigma2 =0.5

58

59 fig , axs = plt.subplots (2,3)

60 images = []

61

62

63 #local pca of noise -free set with 1024 pixels

64 SI = np.zeros((Size ,Size ,Channels))

65 SI = build_dataset_2comp(SI ,Signal_ch ,Signal ,0.25)

66 denoised_2comp =treat_locally(SI)

67

68 for k in range (2):
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69 images.append(axs[k,0]. imshow(denoised_2comp [:,:,k],vmin=-1,vmax =1))

70 axs[k,0]. set_axis_off ()

71 print(’noise -free set: variance:’,round(np.var(denoised_2comp [:4 ,12:20 ,1]) ,4))

72

73

74 #local pca of noisy set with 1024 pixels

75 SI = np.zeros((Size ,Size ,Channels))

76 SI = build_dataset_2comp(SI ,Signal_ch ,Signal ,0.25)

77 SI = add_gaussian_noise(SI ,0,Sigma2)

78 denoised_2comp =treat_locally(SI)

79 for k in range (2):

80 images.append(axs[k,1]. imshow(denoised_2comp [:,:,k],vmin=-1,vmax =1))

81 axs[k,1]. set_axis_off ()

82

83 #local pca of noisy set with 16384 pixels

84 Pixels =16384

85 Size = int(m.sqrt(Pixels))

86

87 SI = np.zeros((Size ,Size ,Channels))

88 SI = build_dataset_2comp(SI ,Signal_ch ,Signal ,0.25)

89 SI = add_gaussian_noise(SI ,0,Sigma2)

90 denoised_2comp =treat_locally(SI)

91 for k in range (2):

92 images.append(axs[k,2]. imshow(denoised_2comp [:,:,k],vmin=-1,vmax =1))

93 axs[k,2]. set_axis_off ()

94

95 plt.show()

Listing 12: Maps of two-component data set reconstruction with local PCA.

5 Squeezing dimensions

5.1 James Bond tells the story

I’ve always admired James Bond’s knack for wriggling out of impossible situations. I said to him:

Figure 39: You wish to experience claustrophobia?

”It’s quite remarkable how smoothly you scale fences, leap from windows, and bulldoze through walls.
I find myself wishing I could be a bit more like you...”
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James’ response, however, was less than encouraging.
”You wish to experience claustrophobia?” he retorted, arching an eyebrow.
”You mean to tell me you’re uncomfortable in a cramped cage with tied hands?”
”Exactly,” He admitted, nodding. ”And in an elevator cabin with closed doors too. I’ve never been a

fan of those maze attractions either. Whenever faced with a labyrinth, I simply opt for a simple ladder and
make my escape into the third dimension.”

Figure 40: James’ method to get out of a maze.

”But what if your enemies manage to trap you in a cell with a closed roof and floor?” I countered.
”Same strategy,” replied he confidently. ”I’ll find my way out through an extra dimension.”
”But we live in a three-dimensional space, you know.”
”Are you sure?” James smirked, shaking his head.

5.2 Are we living in 3 dimensions?

Bond was onto something. The true dimensionality of our world remains a mystery. It seems our brains
have settled on encoding it as a three-dimensional space, but this choice is purely pragmatic. Throughout
our evolutionary history, activities in other dimensions didn’t offer any survival advantages, so our brains
streamlined their processing to focus on the three dimensions most relevant to our daily lives.

It’s likely that our neural networks somehow compress the external reality to achieve this reduction
in dimensionality. And no, I’m not referring to the time dimension introduced most notably by Albert
Einstein (our brains haven’t quite grasped that one yet, by the way). There could be other dimensions
lurking beyond our perception, but since they don’t offer practical utility in the vast majority of cases, we
remain oblivious to them.

So, just like Principal Component Analysis (PCA) condenses multi-dimensional data by selecting a few
major components and discarding the rest, our minds perform a similar feat. By truncating the world
to three dimensions, we simplify the cognitive load, making it easier to navigate and comprehend. It’s a
fascinating parallel: our mental autoencoder and PCA both strive to reduce complexity, enabling us to
operate more efficiently within our dimensional framework.
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Figure 41: In a cell.

Figure 42: Same strategy

5.3 Best way to truncate the PCA dimensions

This truncation process lies at the heart of PCA. To illustrate that, I constructed a synthetic map featuring
three compounds, each emitting distinct spectroscopic peaks. Adding Gaussian noise for realism (Poisson
noise would have been more appropriate, but I opted for simplicity), I created a scenario where each pixel of
the map could potentially emit a continuous or discrete signal across 1000 energy channels. This translates
to a staggering 1000 dimensions in our data space, making navigation cumbersome.
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Figure 43: Layered structure consisting of 3 compounds where a spectrum from each pixel is taken.

Enter PCA. By extracting, for instance, the ten most significant directions (principal components) from
this 1000-dimensional space, we can squeeze data points into the more manageable volume. Look at the
two-dimensional projection of this volume, specifically at the plane formed by the first and second principal
components. You see a clear delineation of the data points corresponding to compounds A, B, and C,
allowing seamless navigation among them.

Figure 44: Data distribution projected on planes formed by different principal components.

However, projecting onto the (second plus third) principal components plane reveals a lack of meaningful
variation along the third axis, indicating a mere Gaussian spread of noise. Similarly, projecting onto the
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(third plus fourth) plane yields a two-dimensional Gaussian distribution devoid of material information,
serving only to quantify noise levels.

Thus, what initially seemed like a daunting 1000-dimensional dataset reveals itself to be effectively
two-dimensional. Even the ten principal components we initially extracted appear excessive.

Still, accurate determining the dataset’s true dimensionality requires a more nuanced approach. Let’s
try to estimate a kind of anisotropy of these two-dimensional projections. Say, to measure how differently
data are distributed along the randomly chosen directions. Such anisotropy parameter should be zero for
directionally uniform distributions and non-zero for anisotropic ones. The possible Python implementation
can be found below.

Figure 45: Anisotropy of joint distribution of different principal components plotted in ascending order.

A straightforward computational solution emerges: identify and retain principal components couples
exhibiting anisotropy, while discarding those that align isotropically. My approach is, of course, not the
only one. You might look at the following alternatives: https://tminka.github.io/papers/pca/ or
https://arxiv.org/abs/1311.0851. Yet, as James Bond remarked, ”It doesn’t matter who and how,
what matters is the mission is performed”.

5.4 Used codes

1

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from PIL import Image

5 from sklearn.decomposition import PCA

6

7 def gaussian_signal(Depth , mu, sig):

8 x =np.arange(Depth)

9 return np.exp(-np.power((x - mu)/sig , 2.) / 2)

10

11 def signal(D,Start ,End ,Fract ,NoiseSigma):

12 Sigmas =5 #+-sigma in range

13 Sig =(End -Start)/2/ Sigmas

14 Mu = (Start +End)/2

15

16 spec =np.arange(D)

17 #spec = gaussian(spec ,Mu ,Sig)*Fract

18

19 if NoiseSigma >0:

20 spec += np.random.normal(0,NoiseSigma ,D)

21

22 return spec

23

24 def compound_layer(Height ,Width):

25 axis = np.arange(Width)
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26 profile = (1 - np.cos(2 * np.pi * axis /Width)) /2 #sinusoidal profile

27 map_c =np.ones((Height ,Width))

28 map_c *= profile #sinusoidal distribution from left to right

29

30 return map_c

31

32 def layers_fragment(Height ,Width):

33 fragment =np.zeros ((Height ,Width ,3))

34 HW =Width //3

35 fragment [:,:HW ,0] =compound_layer(Height ,2*HW)[:,HW:] #right half of A

36 fragment [:,:2*HW ,1] =compound_layer(Height ,2*HW) # B compound

37 fragment[:,HW:,2] =compound_layer(Height ,2*HW) # C compound

38 fragment [:,2*HW:,0] =compound_layer(Height ,2*HW)[:,:HW] #left half of A

39

40 return fragment

41

42 def make_SI_3features(im,Depth ,SignalSigma ,NoiseSigma):

43 Height =im.shape [0]

44 Width =im.shape [1]

45 imSI =np.zeros((Height ,Width ,Depth))

46

47 for y in range(Height):

48 for x in range(Width):

49 #print(x,y)

50 Feature_A = im[y,x,0]

51 Feature_B = im[y,x,1]

52 Feature_C = im[y,x,2]

53 spec = Feature_A*gaussian_signal(Depth ,Depth/4, SignalSigma) #add 1st feature

54 spec += Feature_B*gaussian_signal(Depth ,2* Depth/4, SignalSigma) #add 2nd

55 spec += Feature_C*gaussian_signal(Depth ,3* Depth/4, SignalSigma) #add 3rd

56 if NoiseSigma >0: #add Gaussian noise

57 spec += np.random.normal(0,NoiseSigma ,Depth)

58 imSI[y,x,:] =spec

59

60 return imSI

61

62 Width =90

63 Height =100

64 maps =np.zeros((Height ,Width ,3))

65 for i in range (3): maps[:,i*(Width //3):(i+1)*(Width //3) ,:] = layers_fragment (100 ,30)

66

67 plt.imshow(Image.fromarray ((255* maps).astype(’uint8’)))

68 plt.show()

69

70 Depth =1000

71 SignalSigma =50

72 NoiseSigma =0.5

73 SI = make_SI_3features(maps ,Depth ,SignalSigma ,NoiseSigma)

74 spec =SI[50,46,:]

75 spec.shape =(Depth ,)

76 plt.plot(np.arange(Depth),spec)

77 plt.show()

78

79 Matrix = SI.copy()

80 Matrix.shape =( Height*Width ,Depth)

81

82 Extracted_components =10

83 pca = PCA(n_components=Extracted_components)

84 pca.fit(Matrix)

85 scores =pca.transform(Matrix)

86 print(scores.shape)

87

88 def scatterplot(scores ,First ,Second):

89 plt.scatter(scores[:,First -1], scores[:,Second -1],s=1)

90 ax = plt.gca()

91 ax.set_aspect(’equal’)

92 plt.show()

93

94 scatterplot(scores ,1,2)

95

96 from math import pi

97
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98 def scatterLimits(score ,Limit:float)->tuple:

99 #plain min and max

100 Mini =np.min(score)

101 Maxi =np.max(score)

102

103 #squise data within a predefined fraction of standard deviation

104 if Limit !=None:

105 Mean =np.mean(score)

106 StDev =np.std(score)

107 Mini =max(Mean -StDev*Limit ,Mini)

108 Maxi =min(Mean+StDev*Limit ,Maxi)

109

110 return Mini ,Maxi

111

112 def rotVectors_0_90(Orients:int) ->list:

113 vec =np.zeros((2, Orients))

114 X =np.arange(Orients)

115 vec[0,:] =np.cos(X*pi/(Orients -1)/2)

116 vec[1,:] =np.sin(X*pi/(Orients -1)/2)

117

118 return vec

119

120

121 def anisotropy(scores ,First:int ,Second=None , Whitening =False ,AniParameters=None):

122 if AniParameters ==None:

123 Cell =20

124 Limit =3

125 Rots =18

126 else:

127 Cell =AniParameters [0]

128 Limit =AniParameters [1]

129 Rots =AniParameters [20]

130

131 if Second ==None: #two consequent scores

132 Second =First+1

133 Length =scores.shape [0] #number of pixels

134 score1 = scores[:,First:First +1]

135 score2 = scores[:,Second:Second +1]

136 score1.shape =(1, Length)

137 score2.shape =(1, Length)

138

139 #limits

140 Mini1 ,Maxi1 =scatterLimits(score1 ,Limit)

141 #print(’Limit ’,Limit ,’min ’,Mini1 ,’max ’,Maxi1)

142 Scaling =1

143 if Whitening ==True: #discard the difference in variance

144 Mini2 ,Maxi2 =scatterLimits(score2 ,Limit)

145 Scaling =(Maxi1/Maxi2 + Mini1/Mini2)/2 #scale approximately same deviations from

zero

146

147 Bins =int(Length/Cell) #number of bins in histogram

148 #such as a given number of points (Cell) fall into one pixel

149 #(at plain distribution)

150

151 vecRotated =rotVectors_0_90(Rots +1)

152

153 coupleScores =np.zeros ((Length ,2))

154 coupleScores [:,0] =score1

155 coupleScores [:,1] =score2*Scaling

156 projections =np.dot(coupleScores ,vecRotated) #projections to series of unit vectors

157

158 hist2D =np.zeros ((Rots+1,Bins)) #histograms for all projections

159 for i in range(Rots +1):

160 hist2D[i,:] =np.histogram(projections [:,i], range=(Mini1 ,Maxi1), bins=Bins)[0]

161

162 histMean =hist2D.mean (0) #mean histogram

163 hist2D -=histMean #deviations from mean

164 hist2D =np.square(hist2D) #squared deviations

165

166 with np.errstate(divide=’ignore ’, invalid=’ignore ’):

167 hist1D = np.true_divide(hist2D ,histMean) #normalize on counts

168 hist1D[hist1D == np.inf] = 0
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169 hist1D = np.nan_to_num(hist1D)

170

171 Ani =hist1D.sum() #sum of squared deviations

172 Ani /=Bins #normalize on Bins

173 Ani /=( Rots +1) #normalize on rotations number

174 Ani -=1 #criterion -> ZERO

175

176 return Ani

177

178

179 def anisotropy_plot(scores ,Whitening =False ,AniParameters=None):

180 Pairs =scores.shape [1]-1 #number of couple is one less than number of scores

181

182 plot =np.zeros(Pairs)

183 for i in range(Pairs):

184 Anisotropy =anisotropy(scores ,i,Whitening =Whitening ,AniParameters=AniParameters)

185 #print(i+1, Anisotropy)

186 plot[i] =Anisotropy

187

188 return plot

189

190 aniso_plot = anisotropy_plot(scores)

191 plt.plot(np.arange(Extracted_components -1)+1, aniso_plot)

192 plt.show()

Listing 13: Truncation of principal components.

John:
You state that there are other dimensions we do not see usually. Do they consist of noise like PCA minor
components?

Pavel:
I did not state anything, it was just the (most probably inaccurate) speculations. PCA selects the most
relevant dimensions and rejects the rest as the rest appears to be noise in most cases. Why not our brains
do the similar job? Is that exactly noise or something else what we rejected? I don’t know. We only can
say that seeing this extra information did not help us and our predecessors to survive. Thus, the evolution
allowed us to cognize only 3 conventional spatial dimensions plus time dimension.

John:
You think we perceive only three dimensions? Then it is hard to explain why for example, a certain sequence
of sounds, music, affects us so much.

Pavel:
I feel there is a sense in your words, but I am not ready to support fully this idea. Let me think about that.
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6 On the Merits of Indolence

6.1 James Bond tells the story

What was never clear to me about James Bond’s personality was why he was dubbed ’agent 007.’ I queried
him once if there were at least six other super-agents comparable to him in skills, intelligence, and experience.

He responded, ’This nickname actually has another origin. My colleagues jest that I possess zero
motivation, zero concentration, and seven romantic adventures per mission.’

Figure 46: James Bond on a mission.

Figure 47: Confidential keyword.
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’What unfairness!’ I screamed. ’To judge so superficially... They should consider your excellent results...’
’I must confess,’ remarked Bond, ’they were not entirely incorrect. I’ve never been particularly indus-

trious, but I’ve endeavored to compensate for any deficiencies in acquired information through advanced
analysis.’

’How thrilling!’ I exclaimed. ’How do you manage that?’
’Ah, now we tread upon my most closely guarded professional secrets,’ he replied, glancing about for

prying eyes, listening devices, and surveillance cameras before hastily scribbling something on a small piece
of paper.

’Top secret!’ he cautioned as he slipped the paper into my pocket.

6.2 Gaussian Process

I could scarcely resist the urge to unfurl the paper immediately, yet I restrained myself until I reached home
and secured all the lockers. Upon unfolding it, I read the words: ’Gaussian Process.’

’Of course!’ I thought to myself. ’I should have deduced it on my own. The Gaussian Process, the most
precise Bayesian prediction method for filling in the missing pieces of information.

For instance, when tasked with retrieving an unknown 1D functional dependence, the initial inclination
may be to sample it at equal intervals. However, this approach proves to be both costly and inefficient.
Instead, a much more effective method involves random sampling, followed by probabilistic filling of the
missing points using the Gaussian Process.

Figure 48: Few random sampling allow for accurate reconstruction of the unknown function with the
Gaussian Process. The blue area around the predicted curve shows the confidence interval.

This strategy proves particularly efficacious for retrieving 2D features with a limited sampling budget.
I recently conducted an experiment wherein I generated a cosine blob at the center of an image and
sampled it with only 100 randomly chosen points. And the Gaussian Process reconstructed the true feature
with remarkable accuracy. To provide a point of comparison, I also plotted (on the rightmost side) the
reconstruction obtained from standard regular sampling, which appeared significantly less impressive despite
employing 100x100 (=10,000) sampling points.

Furthermore, it is intriguing to observe how the reconstruction evolves with the sequential addition
of sampling points. The resulting image consistently maintains a smooth appearance but remains rather
inaccurate when only a small number of points are taken. However, accuracy improves rapidly with the
accumulation of more sampling points, approaching the original image closely even with just 50 samplings.

6.3 Used codes
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Figure 49: Two-dimensional feature randomly sampled followed by reconstruction with the Gaussian Pro-
cess. This is very economical and more efficient than the regular sampling reconstruction.

Figure 50: Evolution of Gaussian Process reconstruction with increasing of the number of sampling points.

1

2 from sklearn.gaussian_process import GaussianProcessRegressor

3 from sklearn.gaussian_process.kernels import RBF , ConstantKernel as C, WhiteKernel

4 import numpy as np

5 import matplotlib.pyplot as plt

6 import math as m

7

8 def feature(X,Width):

9 func = (1+np.cos(X*4*m.pi/Width))/2

10 func =np.where(X<Width/4,0,func)

11 func =np.where(X>Width *3/4,0,func)

12 return func

13

14 def generate_random_grid(Points ,Width):

15 rng = np.random.default_rng ()

16 #random values between 0 and Width

17 X = np.sort(rng.uniform(0, Width , Points)).reshape(-1, 1)

18 #calcalte feature at these points and add noise

19 y = feature(X,Width).ravel() + rng.normal(0, 0.1, X.shape [0])

20 return X, y

21
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22 def train_gp(X, y):

23 # Kernel: combination of a constant kernel , RBF kernel and WhiteNoise

24 kernel = C(1.0, (1e-4, 1e0)) * RBF(length_scale =1.0,

25 length_scale_bounds =(1e-2, 1e1))+ WhiteKernel(noise_level =0.1,

26 noise_level_bounds =(1e-3, 1e1))

27 gp = GaussianProcessRegressor(kernel=kernel , n_restarts_optimizer =10)

28 gp.fit(X, y)

29 print(gp.kernel_)

30 return gp

31

32

33 width =10

34 Points_reg =1000

35 Points =20

36

37 # Generate random grid

38 X_rnd , y_rnd = generate_random_grid(Points ,width)

39

40 # Train Gaussian Process

41 gp = train_gp(X_rnd , y_rnd)

42

43 # Predict regular grid

44 X_reg = np.linspace(0, width , Points_reg).reshape(-1, 1)

45 y_pred , sigma = gp.predict(X_reg , return_std=True)

46

47 # Visualize

48 plt.figure(figsize =(10, 5))

49 plt.plot(np.arange (100)/width , feature(np.arange (100)/width ,width), ’g-’, label=’Truth ’)

50 plt.plot(X_rnd , y_rnd , ’r.’, markersize =10, label=’Observations ’)

51 plt.plot(X_reg , y_pred , ’b-’, label=’Prediction ’)

52 plt.legend ()

53

54 # Show confidence interval based on prediction spread sigma

55 plt.fill_between(X_reg.ravel(), y_pred - 1.96 * sigma , y_pred + 1.96 * sigma ,

56 alpha =0.2, color=’blue’)

57 plt.show()

Listing 14: Random sampling of a 1D function followed by the Gaussian Process reconstruction.

1

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from sklearn.gaussian_process import GaussianProcessRegressor

5 from sklearn.gaussian_process.kernels import RBF , ConstantKernel as C,WhiteKernel

6 import math as m

7

8

9 def feature(X, Y, width):

10 R = np.sqrt((X - width / 2) ** 2 + (Y - width / 2) ** 2)

11 func = (1 + np.cos(R * 3 * np.pi / width)) / 2

12 func =np.where(R>width/3,0,func)

13 return func

14

15 def generate_regular_grid(width , Samples ,noise =0):

16 x = np.linspace(0, width , Samples)

17 y = np.linspace(0, width , Samples)

18 X, Y = np.meshgrid(x, y)

19 Z = feature(X, Y, width) + np.random.normal(0, noise , X.shape) # Adding some noise

20 return X, Y, Z

21

22 def generate_random_grid(Width ,Points ,noise =0):

23 rng = np.random.default_rng ()

24 X = rng.uniform(0, Width , Points).reshape(-1, 1)

25 Y = rng.uniform(0, Width , Points).reshape(-1, 1)

26 Z = feature(X, Y, width) + np.random.normal(0, noise , X.shape) # Adding some noise

27 return X, Y, Z

28

29 def make_2d_grid(X,Y):

30 # Flatten the matrices for fitting

31 X_flat = X.ravel ().reshape(-1, 1)

32 Y_flat = Y.ravel ().reshape(-1, 1)

33 XY = np.hstack ((X_flat , Y_flat))
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34 return XY

35

36 def train_gp_2d(X, Y, Z):

37 XY =make_2d_grid(X,Y)

38 Z_flat = Z.ravel ()

39 # Define and fit the Gaussian Process

40 kernel = C(1.0, (1e-4, 1e1)) * RBF(length_scale =1.0) + WhiteKernel(noise_level =0.05)

41 gp = GaussianProcessRegressor(kernel=kernel , n_restarts_optimizer =10)

42 gp.fit(XY, Z_flat)

43 print(gp.kernel_)

44 return gp

45

46 def subplot_contour(X,Y,Z,ind ,Title):

47 plt.subplot(1, 3, ind)

48 plt.contourf(X, Y, Z, levels =50, cmap="viridis")

49 plt.colorbar ()

50 plt.title(Title)

51 plt.gca().set_aspect(’equal’)

52

53

54 width =10

55 Points_reg =10000

56 Samples =int(m.sqrt(Points_reg))

57 Points =100

58

59 X, Y, Z_true = generate_regular_grid(width , Samples)

60 X, Y, Z_reg = generate_regular_grid(width , Samples ,noise =0.1)

61 X_rnd , Y_rnd , Z_rnd = generate_random_grid(width , Points ,noise =0.1)

62

63 gp =train_gp_2d(X_rnd , Y_rnd , Z_rnd)

64 XY =make_2d_grid(X, Y)

65 Z_pred = gp.predict(XY).reshape(Samples , Samples)

66

67 plt.figure(figsize =(20, 6))

68 subplot_contour(X,Y,Z_true ,1,"Truth")

69 subplot_contour(X,Y,Z_pred ,2,"GP random")

70 subplot_contour(X,Y,Z_reg ,3,"Regular")

Listing 15: Random sampling of a 2D function followed by the Gaussian Process reconstruction.

1

2 #### ADD FUNCTIONS FROM THE PREVIOUS LISTING ####

3 def subplot_contour(X,Y,Z,ind ,Title):

4 plt.subplot(2, 3, ind)

5 plt.contourf(X, Y, Z, levels =50, cmap="viridis")

6 plt.title(Title)

7 plt.gca().set_aspect(’equal’)

8 plt.colorbar ().remove ()

9

10 def add_random_points(X_rnd , Y_rnd , Z_rnd , Points):

11 #print(X_rnd.shape)

12 X_new ,Y_new ,Z_new =generate_random_grid(width , Points ,noise =0.1)

13 X_rnd =np.concatenate ((X_rnd ,X_new),axis =0)

14 Y_rnd =np.concatenate ((Y_rnd ,Y_new),axis =0)

15 Z_rnd =np.concatenate ((Z_rnd ,Z_new),axis =0)

16

17 gp =train_gp_2d(X_rnd , Y_rnd , Z_rnd)

18 return X_rnd , Y_rnd , Z_rnd , gp

19

20 width =10

21 Added_points =10

22 Samples =100

23

24 X, Y, Z_true = generate_regular_grid(width , Samples)

25 XY =make_2d_grid(X, Y)

26

27 X_rnd =np.zeros ((1,1))

28 Y_rnd =np.zeros ((1,1))

29 Z_rnd =np.zeros ((1,1))

30

31 plt.figure(figsize =(18, 12))

32 for i in range (6):
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33 X_rnd , Y_rnd , Z_rnd , gp =add_random_points(X_rnd , Y_rnd , Z_rnd ,Added_points)

34 Z_pred = gp.predict(XY).reshape(Samples , Samples)

35 Points = X_rnd.shape [0]

36 print(’points ’,Points)

37 subplot_contour(X,Y,Z_pred ,i+1,Points)

Listing 16: Evolution of the Gaussian Process reconstruction with increasing sampling.

Michael:
Did you hear about compressed sensing?

Pavel:
Yes, I did. Actually, this story is exactly about compressed sensing, although the reconstruction algorithms
may differ. L1 sparsity algorithms are more common in compressed sensing, e.g. https://arxiv.org/abs/
1211.5231. However, I think the Gaussian Process is more elegant.

7 Art of prophesy

7.1 James Bond tells the story

One of the most exhilarating scenes in spy movies is the daring escape of a secret agent amidst a hailstorm
of enemy gunfire. A cunning agent avoids a direct path, instead weaving through a serpentine course that
makes targeting him a daunting task for his adversaries, who struggle to anticipate his next move.

Figure 51: It is hard to predict a move of a cunning secret agent.

James interjected, ”It’s not very common, although, once I appeared exactly in the situation you de-
scribed”

”Was it a sniper from a foreign agency?” I inquired.
A shadow crossed the Bond’ face.
”Actually, it was a jealous husband. That was a case where I failed to foresee the circumstances quite

accurately...” Bond confessed, before firmly pushing aside the unpleasant memories and continuing,
”But it’s not important. In most instances, our aim is to predict not the trajectory of bullets, but rather

the intentions and even the mental states of our adversaries. We employ various models and artificial neural
networks.”

”And do they accurately predict the future?”
James maintained the optimistic facade but with some hints of doubts at his face.
”You know, it is very difficult to make predictions, especially about the future. . . ”

7.2 Predicting time series with LSTM networks

Can one become a sort of oracle by employing the hints of James Bond? I pondered this question as
I embarked on a simple experiment. Constructing a basic function, say a sinusoidal wave, I posed the
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Figure 52: Unforeseen situation.

Figure 53: The powerful MI-6 artificial neuronal networks can predict the result of a coin toss experiment
with the precision of up to 50%.
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question:
”If we observe such an oscillating time series for an extended time, can we forecast its future behavior?”
To increase the challenge, I introduced noise into the equation, ensuring that extrapolation alone could

not decipher the pattern.

Figure 54: Sinusoidal time series with added noise.

I devised a rudimentary neural network with a couple of LSTM layers, augmented by a dropout layer
to prevent overfitting. Configuring the model to utilize the preceding 50 measurements to predict the
subsequent value, I discovered that a network trained on 70% of the complete time series could reasonably
extrapolate the remaining 30% of data.

Figure 55: Prediction of the network vs actual data.

However, there is honestly a kind of cheating in this figure. The network did not forecast the entire
curve at once; rather, it predicted only one next measurement based on knowledge of the preceding 50
actual measurements.

Lets do it more fair. Suppose we have a starting point for predictions and had no access to real
measurements beyond that point. Utilizing the previous 50 measurements, we make one initial prediction.
Subsequently, we treat this prediction as a fictitious measurement, appending it to the 49 previous actual
measurements (totally 50 required) to make the subsequent guess. This process continues iteratively for the
requested number of steps.

Of course, such predictions based on predictions will fail sooner or later but looking into the future for,
say 10 steps, is well possible.
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Figure 56: 10-steps prediction starting from an arbitrary chosen point.

Why Bond was a bit skeptic about the predictions? Maybe he meant forecasting something more
complicated than a sin function?

7.3 Used codes

1

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 # Example data

6 Length =500

7 aXis =np.arange(Length)

8 rng = np.random.default_rng ()

9 data =np.sin(aXis *20/ Length) + 1 +rng.normal(0, 0.05, aXis.shape [0])

10 plt.plot(aXis ,data)

11 plt.show()

12 data =data.reshape (-1,1)

13 print(data.shape)

14

15 # Prepare data batches

16 Interval =50

17 X,y = [],[]

18 for i in range(Interval , len(data)):

19 X.append(data[i-Interval:i, 0])

20 y.append(data[i, 0])

21 print(’number of available series ’,len(X))

22

23 # Split to training and test sets

24 train_size = int(len(X) * 0.7)

25 X_train , X_test = X[: train_size], X[train_size :]

26 y_train , y_test = y[: train_size], y[train_size :]

27 print(’train series ’,len(X_train),’test series ’,len(X_test))

28

29 X_train , y_train = np.array(X_train), np.array(y_train)

30 X_train = np.reshape(X_train , (X_train.shape[0], X_train.shape[1], 1))

31 print(X_train.shape , y_train.shape)

32

33 # Build model

34 from keras.models import Sequential

35 from keras.layers import LSTM , Dense , Dropout , Flatten

36 model = Sequential ()

37 # Adding LSTM layers

38 model.add(LSTM(units =50, return_sequences=True , input_shape =( X_train.shape [1], 1)))

39 model.add(LSTM(units =50, return_sequences=True))

40 # Adding Dropout to supress overfitting

41 model.add(Dropout (0.2))

42 # Adding a Flatten layer before the final Dense layer

43 model.add(Flatten ())
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44 model.add(Dense (1))

45

46 # Compile the model

47 model.compile(optimizer=’adam’, loss=’mean_squared_error ’)

48 model.summary ()

49

50 # Train the model MIGHT TAKE TIME !

51 history = model.fit(X_train , y_train , epochs =10, batch_size =25, validation_split =0.2)

52

53 # Visualize training epochs

54 History = history.history

55 plt.plot(History[’loss’], label=’Train_loss ’)

56 plt.plot(History[’val_loss ’], label=’Val_loss ’)

57 plt.xlabel(’Epoch ’)

58 plt.title(’Loss’)

59 plt.show()

60

61 # Predict test data (One step prediction)

62 X_test , y_test = np.array(X_test), np.array(y_test)

63 X_test = np.reshape(X_test , (X_test.shape[0], X_test.shape[1], 1))

64 y_pred = model.predict(X_test)

65 print(X_test.shape ,y_pred.shape)

66

67 plt.plot(aXis[train_size :],data[train_size :])

68 plt.plot(aXis[train_size+Interval:],y_pred.flatten ())

69 plt.show()

70

71 # Multi step prediction

72 def multipass_prediction(X_test ,rel_Point ,Steps ,Interval):

73 current_batch = X_test[rel_Point ,:,:]

74 current_batch =current_batch.reshape(1,Interval ,1)

75 predictions =np.zeros(Steps)

76 for i in range(Steps):

77 one_prediction = model.predict(current_batch)

78 print(one_prediction)

79 one_prediction =one_prediction.reshape (1,1,1)

80 predictions[i] =one_prediction [0][0]

81 current_batch = np.append(current_batch [:, 1:, :], one_prediction , axis =1)

82 return predictions

83

84 def show_multipass(abs_Point ,X_test ,train_size ,Interval ,Steps):

85 y_pred = multipass_prediction(X_test ,abs_Point -train_size -Interval ,Steps ,Interval)

86 plt.plot(aXis[abs_Point:abs_Point+Steps],y_pred ,color=’red’)

87

88 plt.plot(aXis[train_size :],data[train_size :])

89 Steps =10

90

91 # Predict for 10 steps starting given points

92 show_multipass (380,X_test ,train_size ,Interval ,Steps)

93 show_multipass (420,X_test ,train_size ,Interval ,Steps)

94 show_multipass (460,X_test ,train_size ,Interval ,Steps)

95

96 plt.show()

Listing 17: Time series prediction with LSTM networks.

8 To find a needle in a haystack

8.1 James Bond in troubles

Upon entering the room, I was startled to find James Bond on all fours, frantically crawling on the floor.
Fear gripped me as I wondered if the building was besieged by enemies, poised to unleash a barrage of
gunfire.

”What’s wrong? Are we under attack?” I stammered, my voice barely audible in the tension of the
moment.

”Quiet!” Bond commanded sharply. ”It’s worse than you think. Don’t move. Stay right where you are.”
”What’s happened?” I whispered, my shock intensifying.
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Figure 57: James Bond in troubles.

”A screw from my glasses has fallen to the floor. Don’t step on it!” Bond explained tersely as he slowly
rose from the ground. With practiced ease, he produced a miniature camera from his pocket, capturing
an image and manipulating the device. ”Aha! There it is,” he declared triumphantly, plucking the once-
invisible screw from the floor, his expression smoothing into satisfaction.

Figure 58: The secret agent has in his arsenal more tricks than you can expect.
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”How did you manage to locate such a small object?” I marveled.
”I have a high-resolution camera equipped with an embedded neural network capable of swiftly identi-

fying any requested object within its field of view,” Bond revealed.
”Remarkable technology! I can envision its applications in locating hidden aircraft or missiles in space

photographs,” I said, impressed by the possibilities.
”Indeed, it can” Bond agreed, ”though its primary function is to locate my lost glasses screws on the

floor.”

8.2 Convolutional neural networks catch objects

Intrigued by this technological marvel, I endeavoured to replicate it on my laptop.
I simulated images of a screw in various locations and orientations. Then, I mimicking the dirty floor

in Bond’s room (it was quite cluttered, by the way).

Figure 59: The cluttered floor consisting of 16 x 16 cells each with a piece of dirt.

Employing a simple convolutional neural network, I devised a method to scan the floor sector by sector,
successfully localizing the screw while disregarding unrelated objects.

Works fine! It is probably as good a network as that embedded in the Bond’s camera.

Figure 60: A screw is successfully localized by the convolutional neural network.

It’s been trained to find lost screws. Perhaps we should redirect its capabilities toward more valuable
pursuits? Searching for lost friends? Good moods? Happiness?

8.3 Used codes

1

2 import numpy as np

3 import matplotlib.pyplot as plt

4 import random as r

5 from PIL import Image , ImageDraw

6

7 def rotated_fig(fig ,x,y,angle):

8 theta = (np.pi / 180.0) * angle
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9 R = np.array ([[np.cos(theta), -np.sin(theta)],

10 [np.sin(theta), np.cos(theta)]])

11 offset = np.array([x, y])

12 transformed_fig = np.dot(fig , R) + offset

13 return transformed_fig

14

15 def rect(x, y, w, h, angle):

16 rect = np.array ([(0, 0), (w, 0), (w, h), (0, h), (0, 0)])

17 return rotated_fig(rect ,x,y,angle)

18

19 def screw(x, y, w, h, d, l, angle):

20 w1 = (w-d)/2

21 w2 = w - w1

22 rect = np.array ([(0 ,0), (w,0), (w,h), (w2,h), (w2,l), (w1,l), (w1,h), (0,h), (0, 0)])

23 return rotated_fig(rect ,x,y,angle)

24

25 def random_rect(size):

26 l_min = size/6

27 l_max = size/2

28 margin =size/2

29

30 w = l_min + np.random.random ()*(l_max -l_min)

31 h = l_min + np.random.random ()*(l_max -l_min)

32

33 x = margin + np.random.random ()*(size - 2* margin)

34 y = margin + np.random.random ()*(size - 2* margin)

35 angle = np.random.random ()*360

36

37 return rect(x, y, w, h, angle)

38

39 def random_screw(size):

40 margin =size/2

41

42 x = margin + np.random.random ()*(size - 2* margin)

43 y = margin + np.random.random ()*(size - 2* margin)

44 angle = np.random.random ()*360

45

46 return screw(x,y,size/4, size/10, size/10, size /16*5, angle)

47

48 def draw_cell(size ,screw=False):

49 # numpy 2D array

50 data =np.ones((size ,size))

51

52 # convert the numpy array to an Image object.

53 img = Image.fromarray(data)

54

55 # draw a rotated rectangle or screw on the image.

56 drawing = ImageDraw.Draw(img)

57 if screw ==True:

58 fig = random_screw(size)

59 else:

60 fig = random_rect(size)

61 drawing.polygon ([tuple(p) for p in fig], fill =0)

62

63 #convert back to np array

64 return np.asarray(img)

65

66 def draw_floor(floor_size , cell_size):

67 floor =np.ones(( cell_size*floor_size ,cell_size*floor_size))

68

69 screw_x = r.randint(0, floor_size)

70 screw_y = r.randint(0, floor_size)

71

72 for x in range(floor_size):

73 for y in range(floor_size):

74 if x == screw_x and y == screw_y: there =True

75 else: there =False

76 cell = draw_cell(cell_size ,screw =there)

77 floor[y*cell_size : (y+1)*cell_size ,x*cell_size : (x+1)*cell_size] = cell

78 if there ==True:

79 plt.imshow(cell)

80 plt.show()
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81 return floor , screw_x , screw_y

82

83 if __name__ == "__main__":

84 floor_size =16

85 cell_size =128

86

87 cell = draw_cell(cell_size)

88 plt.imshow(cell)

89 plt.show()

90

91 floor ,screw_x , screw_y = draw_floor(floor_size , cell_size)

92 plt.imshow(floor)

93 plt.show()

94 print(’screw at x =’,screw_x ,’ y =’, screw_y)

Listing 18: Simulation of chaotic objects spread on the floor.

1

2 from Needle_simulate import * # the previous script simulating objects on the floor

3 # must be imported here

4 from tensorflow.keras.models import Sequential

5 from keras.layers import Conv2D , MaxPooling2D , Dense , Flatten

6 from keras.optimizers import Adam

7 from matplotlib.patches import Rectangle

8

9 floor_size =16

10 cell_size =128

11

12 floor , screw_x , screw_y = draw_floor(floor_size , cell_size)

13 plt.imshow(floor)

14 plt.show()

15 print(’screw at x =’,screw_x ,’ y =’, screw_y)

16

17 def rebin_2D(arr ,Bin):

18 Height ,Width =arr.shape

19 shape = (Height //Bin , Bin , Width//Bin , Bin)

20 # for Bin=2: H/2 2 W/2 2

21 return arr.reshape(shape).mean (3).mean (1)

22

23 def build_database(Capacity ,cell_size ,Bin):

24 data =np.zeros((Capacity ,cell_size //Bin ,cell_size //Bin))

25 labels =np.zeros ((Capacity ,1),dtype=bool)

26 for i in range(Capacity):

27 there = r.choice ([True , False])

28 cell = draw_cell(cell_size ,screw =there)

29 cell = rebin_2D(cell ,Bin)

30 data[i,:,:] =cell

31 labels[i,:] =there

32 data.shape = data.shape +(1,)

33 return data , labels

34

35 Bin =4

36 data , labels = build_database (1000, cell_size ,Bin)

37 print(data.shape ,labels.shape)

38

39 # simplest convolutional network

40 model = Sequential ([

41 Conv2D (16, (3,3), activation=’relu’, input_shape =( cell_size //Bin , cell_size //Bin ,1),

padding=’same’),

42 MaxPooling2D (2,2),

43 Conv2D (32, (3,3), activation=’relu’, padding=’same’),

44 MaxPooling2D (2,2),

45 Conv2D (64, (3,3), activation=’relu’, padding=’same’),

46 MaxPooling2D (2,2),

47 Flatten (),

48 Dense (256, activation=’relu’),

49 Dense(1, activation=’sigmoid ’)

50 ])

51 #model.summary ()

52

53 model.compile(loss=’binary_crossentropy ’,

54 optimizer=Adam(learning_rate =0.0005) , metrics=’accuracy ’)

58



55

56 history = model.fit(data , labels ,

57 epochs =20,

58 )

59

60 plt.plot(history.history[’loss’], label=’Train_loss ’)

61 plt.show()

62

63 def fragm(floor ,x,y,cell_size):

64 return floor[y*cell_size : (y+1)*cell_size ,x*cell_size : (x+1)*cell_size]

65

66 def check_floor(floor ,floor_size , cell_size , Bin):

67 data =np.zeros(( floor_size **2, cell_size //Bin ,cell_size //Bin ,1))

68

69 for x in range(floor_size):

70 for y in range(floor_size):

71 cell = fragm(floor ,x,y,cell_size)

72 cell = rebin_2D(cell ,Bin)

73 data[y + x*floor_size ,:,:,0] =cell

74

75 labels = model.predict(data)

76 labels = (labels >0.5)

77 found_index = np.argmax(labels)

78 found_x = found_index // floor_size

79 found_y = found_index - found_x*floor_size

80

81 return found_x , found_y

82

83 found_x , found_y = check_floor(floor ,floor_size , cell_size ,Bin)

84 print(’found at x =’,found_x ,’y =’, found_y)

85

86 x0 = found_x * cell_size

87 y0 = found_y * cell_size

88 plt.imshow(floor)

89 rect = Rectangle ((x0,y0),cell_size ,cell_size ,linewidth=2, edgecolor=’r’,facecolor=’none’)

90 plt.gca().add_patch(rect)

91 plt.show()

92

93 cell = fragm(floor ,found_x , found_y ,cell_size)

94 plt.imshow(cell)

95 plt.show()

Listing 19: Convolutional neuronal network localizing a screw on the floor.

Ziming:
Hi Pavel, I checked your code and found some tricking there. You break the image on the fixed fragments.
If the screw comes near the boundary of the fragment it is not found.

Figure 61: Scanning over two grids. Objects near the border of one grid appear withing the depth of
another one. Objects can be localized with the double precision if they are in depth for both grids or with
the standard precision if they are near the borders.

Pavel:
This issue is easily fixed by adding the second grid shifted relative the first one. Such network will catch
95% cases and eventually localize the object more precisely.

59



This is however not essential. You can infinitely improve the precision and robustness of the neural
network, especially if you are paid for that. My manuscript is not a tutorial on machine learning but rather
a key to understanding of what is going on. I see from your question that you already got the point.
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